钌掺杂铜纳米粒子的合成与一氧化氮电还原合成氨性能

来源 :天津大学 | 被引量 : 0次 | 上传用户:lfm888
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
近年来,作为大气污染中的主要污染物之一,一氧化氮(NO)已经引起了严重的环境问题,比如光化学烟雾、酸雨以及臭氧层的破坏等。而当前,去除NO最为广泛的方式是选择性催化还原(SCR)技术,通过使用该技术可以将NO转化为无毒无害的氮气并释放出来。但是,由于SCR技术主要以宝贵的氨(NH3)或氢(H2)作为还原剂,而不是一个理想的方法。因此,借鉴电催化水分解析氢反应(HER)的思路,利用水中的氢源在温和条件下电催化NO氢化还原转化成可回收的铵(NH4+)具有非常重要的意义。已有报道,掺杂被广泛用于提高HER电催化剂性能,但未有将掺杂的方法用作提高NO电还原合成NH3或NH4+电催化剂性能的报道。基于此,本文将设计开发高选择性电催化NO还原合成NH4+催化剂作为目标,制备了一系列不同含量的Ru掺杂Cu电催化剂,并且通过一系列表征对其形貌、结构和组成进行了探究,并将其用于电催化NO还原合成NH4+活性探究。主要研究内容如下:通过共沉淀法合成Ru掺杂Cu(OH)2前驱物(Rux-Cu1-x(OH)2),然后经电化学还原制得Ru掺杂Cu纳米颗粒(Rux-Cu1-x NPs)。表征结果表明,所制备出的RuxCu1-x为立方相的纳米颗粒,且Ru均匀地掺杂进Cu NPs中。将所合成的Cu和Rux-Cu1-x纳米颗粒用于电还原NO合成NH4+性能测试中,并利用核磁共振氢谱与比色法对NH4+进行了定量分析,结果表明最优掺杂量的Ru0.05Cu0.95催化剂具有高的的法拉第效率(64.9%)、产率(17.68 mmol gcat-1 h-1)和良好的稳定性,并且通过在线电化学微分质谱和电化学原位红外光谱确定了NO还原的反应路径。此外,通过利用X射线光电子能谱(XPS)和密度泛函理论(DFT)计算共同揭示了Ru掺杂在电催化NO还原反应中的作用机制:Ru掺杂引起Cu表面的d带中心下降,降低了限速加氢步骤的反应能和NH3的解吸能,从而提高了NO电化学还原性能。
其他文献
液固两相流化床凭借其接触高效、传质传热性能优良、颗粒分布均匀等优点被广泛的应用在化工、能源、冶金、材料和医药等领域。然而,流化床中复杂的流动传质耦合行为及其伴随的湍流特性十分复杂,仅依靠实验和纯理论分析难以揭示其相互作用规律,无法获得准确的速度场和浓度场分布情况,制约了液固两相流化床技术的进一步发展和工业应用。目前,将计算流体力学(CFD)与传质过程理论相结合并与计算机相关学科交叉而发展出的计算传
学位
在结晶过程中,使用有效的方法调控晶体的形貌对工业生产有着十分重要的意义。本文基于溶液结晶过程,以氟啶虫酰胺为模型物质,采用实验和模拟相结合的方法,主要研究了溶剂和添加剂对氟啶虫酰胺晶体形貌的调控作用。为了系统地研究氟啶虫酰胺的结晶过程,本文首先研究了氟啶虫酰胺在不同溶剂中溶解过程的热力学性质,对结晶溶剂进行了初步筛选。采用重量法测定了氟啶虫酰胺在12种纯溶剂(甲醇、乙醇、正丙醇、异丙醇、正丁醇、异
学位
葡萄糖是人体内最重要的碳水化合物之一,是日常活动的重要能量来源。目前,随着社会的进步和人们生活水平需求的提高,世界上越来越多的人受到糖尿病的困扰。为了有效预防糖尿病的危害并且保障人们的日常生活,有必要监测人们日常生活中血液和食物中的葡萄糖水平,来控制人们的饮食。而传感器是监测葡萄糖水平的重要器件,其中传感器的电极材料为其核心部件。目前,许多传感器材料被广泛的研究,而其中的金属Ni是一种具有良好电化
学位
锂离子电池作为一种新型绿色储能器件已被广泛应用于人们日常生活中。其中,便携式电子设备、电动汽车领域和电网储能技术的不断进步对锂离子电池的性能要求越来越高。富镍三元正极材料(Li NixCoyMn1-x-yO2,x≥0.8),因其具备容量高,成本低等优点引起了人们的广泛关注。然而富镍三元正极材料在使用过程中面临着循环寿命短和热稳定性差等问题,限制了其大规模应用。本文针对上述问题,以LiNi0.8Co
学位
二氧化碳的过量排放引发了全球气候变暖、海平面上升、海洋酸化等一系列环境问题,2020年9月我国在第七十五届联合国大会上提出努力争取在2060年前实现“碳中和”,因此发展绿色经济可持续的方法减少二氧化碳势在必行。利用电化学还原方法将二氧化碳转化为有附加值的化学品是缓解温室效应,实现碳循环的有效途径。尽管近年来电催化还原二氧化碳的研究取得了较大的进展,但走向大规模的生产应用还有很长的发展道路。开发高选
学位
本论文基于大肠杆菌克隆表达体系,通过分子生物学手段对目的蛋白(赖氨酸脱羧酶和漆酶)进行高效表达,并应用于戊二胺的制备和抗生素的降解,为戊二胺的中试放大和其他有机污染物的降解提供有益参考。本论文的主要研究内容如下:(1)赖氨酸脱羧酶的高效表达及其催化合成戊二胺的工艺开发:来源于大肠杆菌(Escherichia coli)的一种名为Cad A的赖氨酸脱羧酶被用来催化赖氨酸制备1,5-戊二胺。基于酶的分
学位
离子液体作为一种绿色环保的溶剂和催化剂,已被应用于化学工业的多个研究领域,尤其在酯交换反应研究中得到了广泛应用。离子液体催化反应精馏结合了离子液体和反应精馏各自的优势,既能提高反应的转化率、降低设备投资,又能减少环境污染,是一种绿色高效的新型反应分离方法。本文研究了磺酸功能化离子液体的酸性,并进行了单一和复盐离子液体催化乙酸甲酯和正己醇酯交换反应的研究,在此基础上进行了以复盐离子液体为催化剂的酯交
学位
生物质转化利用可缓解能源和环境问题,脂肪酸酯经加氢脱氧可制备柴油类烃。通常,加氢脱氧是在外部提供氢气的条件下进行,但氢气在储存和运输等过程中存在安全问题。将原位水相重整制氢和加氢脱氧耦合的原位加氢脱氧技术可避免外部供氢存在的问题。本文开展了以棕榈酸甲酯为模型反应物、甲醇为供氢剂的水相原位加氢脱氧催化剂制备和性能研究。由于苛刻的水热条件易导致催化剂烧结、活性组分流失及结构破坏,本文设计制备了碳包覆镍
学位
低温CO氧化同时具备关键的应用价值和研究意义。铜锰复合氧化物作为常用的CO氧化催化剂,廉价易得且性能优异,通过调控其结构,改变催化剂的物理化学性质及铜锰物种之间的协同效应均能提高CO氧化反应的活性。据此,本论文研究了铜锰基复合氧化物的改性对于CO氧化反应的影响,探究其构效关系。本论文通过对铜锰基复合氧化物的制备条件的探索,得到最优催化剂及其处理条件。对催化剂的结构和表面特征进行了N2吸附-脱附、X
学位
离心萃取是化工过程中重要的单元操作,在过程工业中有着广泛的应用。萃取器的结构对萃取效率有重要影响,然而,目前关于萃取效率的研究较少。本文使用3D打印技术自制的环隙式离心萃取器,以环己烷-异丙醇-水为实验物系,探究了不同结构参数下萃取效率的变化。实验结果表明,当环隙宽度分别为3.0 mm、4.0 mm和5.0 mm时,萃取效率分别为94.5%、89.6%和85.5%。间隙高度从3.0 mm增加到5.
学位