【摘 要】
:
自2004年石墨烯的成功制备以来,石墨烯以其独特的物理化学性质极大地吸引研究人员对与石墨烯组成和结构不同的其他二维材料的探索。作为与石墨烯结构相似的IV族二维材料,硅烯和锗烯具备优异的电学和热学性质,伴随着其从理论预测到实验制备成功再到光电器件、储能和生物医学等众多领域的应用,硅烯和锗烯引起了广泛的关注。在此背景下,从理论计算的角度研究硅烯和锗烯中电子和声子相互作用(电声耦合),对明晰它们的电子和
论文部分内容阅读
自2004年石墨烯的成功制备以来,石墨烯以其独特的物理化学性质极大地吸引研究人员对与石墨烯组成和结构不同的其他二维材料的探索。作为与石墨烯结构相似的IV族二维材料,硅烯和锗烯具备优异的电学和热学性质,伴随着其从理论预测到实验制备成功再到光电器件、储能和生物医学等众多领域的应用,硅烯和锗烯引起了广泛的关注。在此背景下,从理论计算的角度研究硅烯和锗烯中电子和声子相互作用(电声耦合),对明晰它们的电子和热输运机制有着重要意义,有助于理解其独特而优异的性能来源,并给出进一步提升的策略。本文运用密度泛函理论、密度泛函微扰理论和最大局域Wannier插值技术,求解线性Boltzmann输运方程,研究硅烯和锗烯的电声耦合特性对热电输运的影响。本文研究了硅烯和锗烯的电声耦合下的输运性质以及有限温度对电声耦合的影响,主要内容涵盖第一性原理下的,不同温度载流子迁移率的计算,各声子分支对电子散射率贡献的逐模态分析,各温度下平均自由程的大小,特定载流子浓度中的热电参数,以及为解决密度泛函理论中绝对零度假设在高温下应用的缺陷而引入的温度依赖有效势。发现温度非谐性的引入会带来声子软化现象,带来更多的三声子散射过程,以及热导率的变化。在此条件下得到了各模态声子的散射率,以及载流子迁移率随温度和载流子浓度的变化。在电声耦合的研究中引入更为准确的温度依赖的声子色散关系,对二维材料体系的热电输运性质有着较大影响。
其他文献
管壳式换热器在工业中广泛被使用,由于能源问题日益严重,因此开发高效换热器是十分有必要的。扭曲管换热器换热效率高且不易结垢,但现有关于管壁结构对扭曲管传热与流动性能影响的相关研究成果较少,故本文提出了具有两种分别具有轴向、周向内肋的椭圆扭曲强化换热管,利用数值模拟与实验揭示其内部流动换热机理。首先,本文提出了一种具有一对轴向排布并且关于椭圆中心对称的矩形内肋的椭圆扭曲管。通过模拟对比分析了湍流下新型
近年来高新技术产业的快速升级,使得电子设备朝着高集成度的方向发展。但是高功耗使得电子设备内部热量积累,为保证设备安全稳定运行需要对其进行散热设计,往往要求热量朝着特定方向快速散失,这就需要研究非均质材料这类热导率具备各向异性特点的材料热物性。首先,基于3ω法基本原理搭建了测试平台,选取了一系列标准样品对平台进行测试,测试结果验证了平台的准确性。使用不同制备方式的加热膜测试获得的样品热导率一致,证明
纳米多孔薄膜在热电转换、分子探测、海水淡化等领域有着广泛的应用。高温退火技术因为适于批量加工而成为纳米多孔薄膜制造的优选方法,但纳米孔在退火过程中的形变机理有待完善。本文通过解析模型、实验和模拟的方法,研究了多孔薄膜的高温形态演化过程;此外,通过模拟计算探究了其热导率的结构依赖性,以证明多孔薄膜材料在热电领域的应用潜力。首先,提出了多孔薄膜高温形变的解析模型。表面自由能最小化被认为是高温形变的方向
本文提出了一种新型正弦波浪形涡发生器,探究了涡发生器的迎流攻角α、无量纲高度Hp等结构参数及排布位置对流动传热性能的影响。基于热力学第二定律,进行了(火用)损失分析。波浪形涡发生器能在流道中产生纵向涡流,有效提升了冷热流体的混合程度。在雷诺数为1027至2054的范围内,与平直翅片相比,努塞尔数提高了8.8%-51.5%,阻力系数增加了9.3%-131.4%,传热(火用)损失最大可降低5.8%。为
测井仪用于勘探地底油气资源分布,面临着高温环境。为保证正常作业,常采用保温瓶将测井仪内部的电子器件与高温环境隔离。然而,目前用于高温环境的保温瓶中传热方式的相对作用性尚不明晰,且已有的保温瓶检测方法无法适用于测井现场的快速检测。针对以上难点,本文主要研究内容及创新点如下:为分析测井仪保温瓶的传热过程,建立了保温瓶真空层多层传热模型、端部热桥效应模型及真空失效状态传热模型。结果表明,高温下保温瓶真空
热超构材料由于其特殊的结构设计而具有超常的热学物理特性,可用于操纵热流。基于热超构材料的热超构器件实现了许多新颖的热流调控功能,其在进行高效热管理、热能收集、新型能源装置设计来提高能源利用效率等方面具有重要的研究意义。针对当前热超构器件存在大多基于规则形状且缺乏在新的实际应用场景的探索研究、不同热超构器件的制备方法缺乏普适性等问题,本文开展了以下工作:为实现固体均温板,提出了一种热超构均热板。利用
多孔介质中的动量和能量传输机理复杂,涉及多尺度效应问题,一直是研究的热点。泡沫金属作为一种强化传热多孔介质,具有优异的高导热性和强热扩散性的特点,广泛应用于工程领域,如:热管,工业换热器,蓄热器和多孔质气体轴承等。因此,多孔泡沫金属内流动和传热的研究具有重要的工程价值和科学价值。鉴于多孔泡沫金属内动量和热量传递研究的重要性,本文构建了Weaire-Phelan泡沫结构,以及多孔复合系统的孔隙模型和
环境污染和能源短缺日益严重,新能源汽车作为一种绿色出行的方式被广泛推广。动力电池关乎着新能源汽车的性能及安全。电池温度过高,会引发过热、起火、爆炸等一系列危险,所以需要追求高性能热管理系统来提高电池安全性和可靠性。但是,关于这类研究的一些基本概念尚未得到明确解释。例如,有多安全就足够了,不安全又如何?本文选取18650钴酸锂电池,构建电池及电池组多物理场耦合模型,并结合实际工况参数,针对极端工况下
加热不燃烧型卷烟(也称为低温卷烟)是一种低害的新型卷烟制品,主要有电加热和燃料加热两种加热方式。目前常用的低温卷烟加热器采用电加热方式,存在加热时间长、换热效率低等问题。本文对课题组前期开发的一种基于燃烧的低温卷烟加热器进行强化传热研究,将燃烧产生的烟气假设为高温空气,借助FLUENT软件平台对卷烟升温速率和加热器换热效率进行系统分析,并通过实验测试验证了所设计的强化传热结构的有效性。首先,通过数
随着世界人口的持续膨胀以及全球范围内的环境恶化,人们对清洁能源的需求日益增长。在河流的入海口,由于河水与海水间存在一定的盐度差,它们的混合吉布斯自由能(盐差能)可达1.4 TW。盐差能能量转换有巨大的前景,目前盐差能发电技术主要有两种:反电渗析以及压力延迟渗透。本文基于数值模拟方法,对微纳尺度反电渗析过程以及压力延迟渗透过程进行了系统的研究,揭示了膜材料特性及运行条件对反电渗析过程以及压力延迟渗透