带粘性项守恒律方程的初值问题解的适定性研究

来源 :上海交通大学 | 被引量 : 0次 | 上传用户:lzxldf2003
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
本文研究带粘性项守恒律方程初值问题解的适定性。首先本文证明对于初值在常态附近的任意大扰动,该方程任意时间解的存在性唯一性和解的稳定性。再在初值扰动充分小的假设下,用Green函数的方法得到该初值问题解在常状态附近扰动的逐点衰减估计,从而证明了解的稳定性。
其他文献
随着我国教育进一步的深化改革,传统的高中数学教学方法已经并不适合现代教育的发展.所以这就要求我们的高中数学教师能够解放思想,改革教育教学的方法和模式,提高学生学习的
框架理论发展至今已广泛应用于光学、信号处理、图像处理、数据压缩、采样理论等领域。由于再生核空间具有很多良好的性质,再生核函数对研究再生核空间中的性质起着至关重要的
代数表示论高维理论是Iyama等人推广经典Auslander-Reiten理论,引入n-Auslander代数[63],n-Auslander-Reiten平移函子[64]等建立发展起来的。作为平移代数的推广,郭引入了n-平移
非方常数表示空间的非方状态,它们的取值与一致正规结构和空间的一些其他几何性质密切相关。空间几何常数的表示与计算能够更精确的描述空间的性质。本文主要研究了非方常数的
本文主要研究了一类系数为非常数的时空白噪声驱动的双边反射随机偏微分方程和一类系数为常数的、关于时间是分式的分式噪声驱动的双边反射随机偏微分方程,而且双边反射壁为光
学位
强自吸收的C*—代数是一类具有特殊性质的C*—代数,因此对其性质的归纳、总结、优化对于研究其它代数有重要意义。 本文主要研究了强自吸收C*—代数的一些性质和C*—代数强
党史工作的根本任务是资政育人。江泽民同志关于“充分发挥党史资政育人作用”的重要指示发表五年来,全国各党史部门做出了显著的成绩。为总结和交流全国党史部门发挥党史资
Loewner微分方程是单叶函数中的一个重要内容,它被证明是解决单叶函数中极值问题最有用的工具之一。为了研究统计物理中一些模型的Scaling极限,1999年,Schramm建立了一个随机版
大规模科学计算和工程技术中许多问题的解决,最终归结为大型稀疏线性方程组的求解,其求解时间在整个问题求解时间中占有很大的比重,有的甚至达到80%.由于现今科学研究和大型项目中