论文部分内容阅读
随着地面建筑和交通空间的日益饱和,城市地下空间的开发和利用逐步被人们重视,城市地铁作为一项地下公共交通工程为缓解和解决地面交通压力做出了极大的贡献。经过近150多年的发展,地铁车站不断刷新特大断面的纪录,大拱脚地铁车站就是一种新型的特大断面形式。地下工程长期处在一个相对封闭、地质环境复杂、高应力地区,任何微小的不确定因素的改变都会对结构的应力状态产生较大影响,从而引起结构的开裂。本文以断裂力学为理论基础,结合ABAQUS软件中的扩展有限元板块分析大拱脚地铁车站拱盖结构在局部偏压荷载、不均匀沉降、不同侧压力系数变化和拱盖结构厚度变化几种因素下结构的开裂、扩展及破坏时裂纹的分布位置及形态。(1)文中将日本隧道衬砌模型试验与利用ABAQUS扩展有限元法的数值模拟结果相对比,得出模拟结果与模型试验的裂纹位置基本一致,充分论证了XFEM法模拟衬砌结构开裂的可行性和适用性,为模拟大拱脚拱盖结构的开裂提供了理论依据。(2)在局部偏压作用下,拱盖结构产生的裂纹与破坏形态随着偏压范围的变化而出现不一致的情况。局部偏压范围越大,结构越容易产生裂纹;结构起裂时首先在偏压区域所对应的拱盖结构内表面产生受弯张口型裂纹;裂纹面上部结构的环向位移大于下部的结构环向位移;同一荷载作用下结构的裂纹扩展速率随着偏压范围的增大而加快;偏压范围较小时,随着荷载的增加,偏压范围外侧的结构混凝土被压溃;偏压范围较大时,主要是以主裂缝的贯穿以及外侧混凝土压溃而破坏,此时,偏压范围上下外表面及左拱脚外表面会产生拉裂纹区;结构在偏压角度一定的条件下,随着纵向偏压长度的增加,裂纹的扩展长度随之增加,在空间形态上表现出两端向拱顶微弯曲的现象。(3)拱盖结构产生横向不均匀沉降时,结构首先在左拱脚外表面产生张拉裂纹,随着沉降量的增加,裂纹逐渐贯穿,表现为压剪裂纹,与此同时,左右拱腰外表面以及拱顶内表面产生拉裂纹区,且右拱腰外表面的裂纹区域比左拱腰的范围大;产生纵向不均匀沉降时,起初沉降值较小,拱顶外表面产生对称的双裂纹,随着沉降值的增大,拱底沉降处产生竖向裂纹,主裂纹以接近45°扩展,扩展速度逐渐加快,达到破坏沉降时,结构沉降处表现出张拉裂纹,另一端表现出剪切破坏。(4)不同侧压力系数结合拱盖结构存在空洞产生的裂纹不同:当空洞位于拱顶区域时,随着侧压力系数的增大,拱顶空洞区外表面首先产生受弯张口型裂纹,结构接近破坏时,拱顶空洞区域、左右两侧拱腰内表面、拱脚外表面会产生拉裂纹区;当空洞位于拱腰时,拱腰外表面混凝土首先会随着侧压力系数的增大被挤出变形,出现“V”形受弯张口型裂纹,随着侧压力系数的继续增大,空洞区外表面、左拱腰内表面、左拱脚外表面以及右拱脚内表面会产生拉裂纹区。(5)随着拱盖结构厚度的增加,结构的起裂荷载逐渐增加,裂纹的扩展速度逐渐减缓。(6)将数值模拟的裂纹以形态、位置等进行归纳分类:(1)拱盖结构在受到偏压及不同侧压力系数作用下首先产生受弯张口型裂纹,主要表现为纵向裂纹,随着荷载的增大在环向迅速扩展;(2)纵向不均匀沉降主要产生斜向和环向裂纹,沉降处裂纹表现为受弯张口型裂纹,随着沉降值的增大会在另一侧产生受剪错台型裂纹;(3)横向不均匀沉降起初在拱脚位置产生受弯张口型裂纹,随着沉降值的增大,结构会发生剪切破坏,产生受剪错台型裂纹。(7)对病害及裂纹的相互对应关系进行总结和描述,得出拱盖结构的拱腰内表面和拱脚外表面是拱盖结构裂纹较易产生的区域,初步得出裂纹位置与病害的对应表格,为实际工程中裂纹的产生及判断提供借鉴。