论文部分内容阅读
TC4钛合金是一种α+β钛合金,其比强度高、密度小、热强度高被广泛应用于航空、航天、化工、船舶等领域。然而其硬度低、耐磨性差限制了它进一步的使用。在众多的表面处理技术中,固体渗硼法因其形成的渗层可以大幅度的提升TC4的硬度和耐磨性且操作简单而被广泛应用。但是现有的单一固体渗硼法得到的渗层都存在韧性低、脆性大等缺陷,为此本文采用以硼为基的硼碳共渗,以期在提升TC4钛合金表面硬度和耐磨性的同时改善渗层的脆韧性。自制渗剂采用B4C和无水硼砂作为供硼碳剂,稀土氧化镧做催化剂,SiC和石墨作为填充剂,在950°C保温12h,得到硼碳共渗层。采用SEM、EDS及XRD等来分析渗层的形貌、成分和相组成,检测其粗糙度、硬度和润湿性,并进行了划痕实验和纳米压痕实验。最后采用球-盘磨损实验,研究渗层在不同载荷和不同摩擦副下的摩擦磨损性能。结果表明:(1)硼碳共渗过后,TC4钛合金表面得到了TiB2和TiB双相结构,渗层总厚度约为17μm,最外层为TiB2,厚度约为5μm,硬度约为3001HV;次表层为TiB相纤维状结构,厚度约为12μm,硬度约为1800HV。在TiB层与TC4交界处有弥散分布的TiC相,由于渗剂中C含量较少未能形成有效的TiC过渡层。渗层整体硬度梯度较陡,压痕形貌较为完整,脆性为3级。(2)为了得到有效的TiC过渡层,降低渗层脆性,在硼碳共渗前对TC4进行固体渗碳预处理。预处理后TC4表面形成了约为11μm的TiC层,最外层凹凸不平并有富C原子的沉积层。(3)随后进行硼碳共渗,TC4钛合金表面得到了TiB2、TiB和TiC三相结构,厚度约为34μm。最外层以TiB2相为主,厚度约为15μm,硬度约为2656HV;次表层以TiB为主,厚度约为6μm,硬度约为1500HV;最内层以TiC相为主,该层较预处理前有所增长,厚度约为13μm,硬度约为910HV。渗层整体性能良好,表面粗糙度Ra约为0.316μm,水接触角约为60.88°;硬度梯度变缓,压痕形貌良好,脆性为1级。(4)球-盘磨损实验表明,在不同载荷和摩擦副条件下,硼碳共渗层可以有效的提高TC4钛合金的耐摩擦磨损性能。载荷约大、摩擦副硬度约高,预处理对硼碳渗层耐摩擦磨损性能改善越明显。相比于基体,渗层的摩擦系数、磨损面积显著下降,且抗磨粒磨损性能增幅较大。(5)渗C预处理后可以提高B原子的扩散速度,并抑制TiB相的生长,形成的TiC过渡层可以有效的改善渗层的脆韧性、提高耐摩擦磨损性能。