论文部分内容阅读
随着计算机技术的快速发展,机器视觉、人工智能已经活跃在人类工作生活中的方方面面,具体有智能交通、智能监控、辅助驾驶等。成像是光电传感器对场景信息的获取过程,是人工智能的“眼睛”,为机器学习等提供不可或缺的数据基础。如何获取能表达场景信息的高质量图像,是学术界和工业界研究的重点和热点问题。 高动态场景是亮度范围较大的场景,具体表现为场景中亮度的最大值与最小值的比值很大,而目前的图像获取设备动态范围有限,用低动态范围的相机拍摄高动态场景的信息,往往会使获取的图像质量较低,影响成像结果。高动态成像技术是解决这一问题最有效的方法,目前,针对高动态场景成像的算法主要有以下三方面的难点:1.如何高效获取能表达高动态场景信息的低动态图像序列;2.如何在高动态重建与色调映射的结果中不引入噪声;3.如何在图像融合结果中保留更多的细节。本文将针对高动态成像算法中存在的问题进行研究,具体包括以下几个方面: (1)提出了基于信息熵最大准则的多曝光控制方法和基于模糊逻辑的多曝光控制方法。基于信息熵最大准则的控制方法针对场景中不同的亮度区域,以信息熵最大为准则进行曝光控制,所获取的图像序列可完整表达高动态场景,且获取的图像序列冗余较少。基于模糊逻辑的控制方法以图像的灰度统计信息为优化目标,在设计初始曝光时间的前提下,通过模糊控制的方法快速获取图像序列,相比于基于信息熵最大准则的多曝光控制方法,该方法能在保证图像质量较好的前提下快速获取图像序列,可满足高动态成像的要求。 (2)提出了基于多项式拟合的相机响应曲线恢复方法和基于累计分布函数的局部色调映射方法。将相机响应曲线建模为高阶多项式,在此基础上添加约束项,可快速求解多项式系数,恢复相机响应曲线。以灰度的累计分布函数为基础,结合多尺度分解,提出了一种快速局部色调映射方法,该方法可针对高动态图像中的不同细节进行不同的压缩,在不引入噪声的前提下提高了压缩效率。 (3)提出了基于场景分割的高动态成像方法和基于引导滤波的多曝光融合方法。对场景区域进行聚类分割后,在分割的结果中进行最优选取、拼接和平滑操作,可以充分获取场景的有效信息合成结果图。基于引导滤波的多曝光融合方法针对图像序列设计权值,利用加权求和的方法实现图像融合,该方法在不引入噪声的前提下,最大程度地保留图像细节,取得了很好的效果。