【摘 要】
:
随着居民汽车拥有量大幅上升,交通事故也逐渐增加,因而汽车安全问题越来越受到关注。金属薄壁结构的吸能盒作为一种常用的吸能装置,广泛用于汽车的设计中。其原理为在汽车碰撞时吸能盒会发生塑性褶皱变形,从而吸收大量碰撞能量。目前,常用吸能盒的制作方式为预制初始形状、压痕开孔或附加挡板结构等。这些吸能盒确实可达到能量吸收的效果。然而,上述制作方式在一定程度上会改变结构的外观和完整性,降低整体强度以及增加加工工
论文部分内容阅读
随着居民汽车拥有量大幅上升,交通事故也逐渐增加,因而汽车安全问题越来越受到关注。金属薄壁结构的吸能盒作为一种常用的吸能装置,广泛用于汽车的设计中。其原理为在汽车碰撞时吸能盒会发生塑性褶皱变形,从而吸收大量碰撞能量。目前,常用吸能盒的制作方式为预制初始形状、压痕开孔或附加挡板结构等。这些吸能盒确实可达到能量吸收的效果。然而,上述制作方式在一定程度上会改变结构的外观和完整性,降低整体强度以及增加加工工艺的难度。针对这些问题,本文采用数值模拟的方法,通过对薄壁结构局部表面纳米化,诱导和控制薄壁结构的屈曲变形和发展路径,实现提高结构能量吸收的能力,并提出一种局部表面纳米化三角形与方形截面组合薄壁吸能结构。本文包括如下研究内容和成果:(1)建立局部表面纳米化薄壁结构模型和有限元数值计算模型。研究局部表面纳米化对直角三角形截面薄壁管的吸能影响。通过分析直角三角形截面薄壁管及其31种对称环向纳米化布局和纳米化屈服极限对结构吸能的影响,发现表面纳米化可在一定程度上诱导屈曲变形且使薄壁管吸能有显著提升。研究结果表明:纳米化有利于提高结构的吸能效果;存在最佳的表面纳米化布局使结构吸能最大化;经纳米化的直角三角形截面和方形截面薄壁管皆能提高吸能能力。然而,由于三角形截面薄壁管在屈曲变形过程中的稳定性问题,其单个管不宜作为吸能结构,需要与其它结构组合设计。(2)研究直角三角形与方形组合截面在局部表面纳米化下的吸能效果。通过分析两种直角三角形与方形组合截面薄壁管在表面纳米化后的屈曲变形和吸能表现,得到一种新的组合截面和最优表面纳米化布局。该组合截面构成四个直角三角形和两个方形图案,而最优的局部表面纳米化布局为环向反对称5等分。这种三角形与方形组合薄壁管在屈曲变形过程中呈现出渐近稳定的叠缩层模式,且相对同形未纳米化结构的比吸能提高83.90%。(3)在单管结构研究的基础上,优化设计出一种直角三角形与方形截面组合的多胞表面纳米化吸能结构。该多胞薄壁结构在屈曲变形过程中不仅保持了渐近稳定叠缩模式,而且压缩力效率高达70.88%以及相比同形未纳米化多胞结构比吸能提升了96.67%。结果还表明,该纳米化多胞薄壁结构的比吸能相比上述纳米化单胞薄壁结构的比吸能提高89.13%。因此,这种纳米化多胞薄壁结构设计方案具有广阔的运用前景,并为今后的吸能装置设计提供一条新的途径。
其他文献
矩阵函数的研究由来已久,随着计算机性能的发展,在各种应用问题中出现的矩阵维数也越来越大,因此针对大规模矩阵函数的数值算法成为新的研究热点。大规模矩阵函数的计算难点在于巨大的计算量和存储量需求。对于满阵,目前可行的方法仍然是并行方法,但是对于稀疏矩阵,可以利用稀疏结构,通过选择合适的过滤技术,将矩阵运算过程中绝对值很小的元素从矩阵中过滤出去,从而达到增加矩阵稀疏度,提高矩阵运算效率的目的。在设计加过
现如今,拓扑优化作为一种高效可靠的结构设计方法,已经在制造业等各个领域获得了广泛的应用。拓扑优化旨在在一定的约束条件之下,寻求设计域内材料的最佳分布。拓扑优化相较于尺寸优化和形状优化,拥有更大的设计自由度,利于提出更有创造性的设计方案。然而传统拓扑优化方法大多存在设计变量数量巨大,结构拓扑隐式表达,优化结果脱离实际生产制造等诸多问题,因此严重影响拓扑优化方法在实际之中的应用。并且,基于拓扑优化领域
地震灾害调查表明,相邻建筑间的碰撞作用是造成结构破坏的主要原因之一。在城市化快速发展和建筑群越来越密集的今天,相邻建筑碰撞问题的研究具有重大的理论意义和应用价值。一些学者对地震作用下相邻建筑碰撞动力响应分析问题进行了研究,但由于该问题是高度非线性的,涉及参数较多,常规方法很难得出明确的规律。量纲分析方法可以减少参数数量,更好地揭示结构地震响应的内在规律。然而,广泛用于地震响应量纲分析的能量长度尺度
随着列车的运行速度和载荷的不断增加,使得列车与轨道之间的动力相互作用加剧,从而影响行车安全。因而,移动列车作用下轨道-地基结构动力响应的研究对列车-轨道-地基系统的设计和维护有着重要意义。在移动系统作用于轨道-地基结构的研究中,常将轨道-地基结构简化为周期结构,将高速列车简化为移动荷载或移动质量。因此,本文对于移动荷载或移动质量作用于周期结构的动力响应进行相关研究。对于求解移动荷载或质量作用于周期
钢筋锈蚀引起的混凝土开裂是钢筋混凝土(RC)结构耐久性降低的重要原因之一。为了解决这个问题,学者已经进行了大量的研究。细观尺度下,多根钢筋锈蚀导致的混凝土开裂具有复杂的裂纹扩展、应力重分布以及裂纹间相互作用等特征。因此,准确地预测多钢筋锈蚀作用下混凝土保护层开裂这一问题具有很大的挑战。本文建立了多钢筋锈蚀引起混凝土保护层开裂的细观尺度相场模型,首次使用一种指数形式的退化函数来弥散界面材料参数,使用
在空天飞行器及航空航天领域,基于结构拓扑优化理论的轻量化设计应对复杂情况的需求逐步增加。对于给定的载荷,板或壳结构的刚度和振动特性可以通过增加肋或加强筋而显著增强。然而,传统隐式拓扑优化框架下的加筋设计通常存在设计变量数目多、计算效率较低、边界描述较差以及无法顺利对接传统建模软件等问题。同时针对复杂的异型结构体加筋优化问题仍需开发严谨高效的加筋优化设计算法。为了解决上述问题,本文选择了一种新的拓扑
目前,我国人口老龄化问题日益突出,身体机能的下降,导致老年人无法承受大型外科手术。因此,研发无创诊疗设备已成为未来医疗器械研发领域的重要发展方向。超声治疗是一类极具应用前景的无创诊疗技术,利用超声波束的方向性、可穿透性、聚焦性等特点,在体外发射高强度超声波并聚焦于病变组织,在消灭病变组织的同时将对人体的伤害降到最低。但是现有超声治疗设备采用的传统电声换能器,发射声波频率限定于固有频率附近,无法实现
本文以镍/碳化钨(Ni-WC)粉末材料作为研究对象,采用爆炸压焊-扩散烧结法制备镍/碳化钨金属复合涂层材料。爆炸压焊-扩散烧结法是多种爆炸加工方式的有机结合,该方法不需要专门设备,具有很高的工作效率,且制备出的复合材料质量高,是一种操作简单且发展前景广阔的爆炸加工方法。在本文中,对爆炸压焊-扩散烧结法的基本工艺流程进行了介绍,对还原烧结、爆炸压焊、扩散烧结这三方面的基本原理进行了详细阐述。在还原烧
联轴器是连接旋转机械中主动装置与从动装置,从而传递扭矩的关键部件。在众多种类的联轴器当中,航空渐开线花键副凭借其优异的力学性能,在航空发动机的大扭矩传递和高精度装配的复杂载荷工况下表现尤为出色,因此在航空发动机领域具有非常广泛的应用。航空花键副的性能是决定航空器传动系统是否安全可靠的关键,过载会影响航空花键副的寿命,甚至可以直接造成航空花键副的断裂失效,进而对整个航空传动系统造成威胁。因此确定航空
拓扑优化因能够帮助设计人员获得新颖的设计结果,已成为航空航天、交通运输等邻域中的关键设计技术。然而实际工业生产中,由于结构复杂、精细化程度高,且各个部件之间的特征尺寸差异较大,加之对于结构响应分析的精度及设计分辨率往往有较高的要求,有可能导致较大计算规模,给优化问题的可求解性带来一定挑战。目前,冗长的设计周期及高额的计算耗费已成为制约拓扑优化应用的重要因素之一。传统的拓扑优化方法大多使用固定欧拉网