基于直立振子的双极化基站天线扩频研究

来源 :华南理工大学 | 被引量 : 0次 | 上传用户:aulifo
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
基站天线是移动通信系统极其重要的组成部分,对移动通信网络的性能有着直接且非常重要的影响。随着移动通信技术的快速发展,相继推出了2G/3G/4G/5G的移动通信系统,频段覆盖1710-2690 MHz,3300-5000 MHz以及国际电信通信系统(IMT)的1427-1518 MHz。因此,天线带宽能够同时覆盖1427-1518 MHz、1710-2690 MHz和3300-5000 MHz尤其重要。直立振子天线由一个印刷振子和与之相连的宽带馈电巴伦构成,具有结构简单,轻型和容易制造等优点。本论文在传统直立振子天线基础上,进行扩频研究,提出三种宽带直立振子天线结构,分别覆盖1.7-2.7 GHz,1.4-2.7 GHz和2.3-5 GHz频段,实现2G/3G/4G/5G和IMT等多个移动通信系统新型宽带基站天线。论文工作的主要研究成果如下:1.通过调整天线的馈电结构和振子臂的长度和宽度,实现一个宽带双极化直立振子天线,带宽覆盖1.7-2.7 GHz。巴伦馈电结构的形状可以多样化,可调性好。通过在天线的外侧加上一个金属围边,提升高频部分增益,降低低频部分交叉极化。仿真与实验结果表明天线15-d B回波损耗带宽覆盖1.7-2.7 GHz,相对带宽45%,隔离度30 d B,增益约为7.6 d Bi,半功率波束宽度为68°±5°。论文研究了八单元天线阵,表明该天线适合2G/3G/4G移动通信基站天线应用。2.在宽带双极化直立振子基础上,通过引入一个十字架寄生单元实现带宽扩展。十字架单元不仅具有扩宽频带的作用还能提高天线增益。通过在天线周围加了一个围边实现稳定增益和较小交叉极化。仿真与实验结果表明天线15-d B回波损耗带宽覆盖1.4-2.7 GHz,相对带宽63.4%,隔离度30d B,增益约为7.8d Bi,半功率波束宽度为68°±5°。论文研究了八单元天线阵,表明该天线适用于2G/3G/4G和IMT移动通信系统基站天线。3.通过引入二个十字架寄生单元实现带宽进一步扩展。在天线的外侧,加上一个金属围边,实现稳定增益和减小某些频点的交叉极化。仿真和测试结果表明,天线15-d B回波损耗带宽覆盖2.3-5 GHz。相对带宽约为75%,隔离度30 d B,增益约为7.6d Bi,半功率波束宽度为68°±5°。论文研究了3×3天线阵,表明该天线适合于4G和5G基站大规模MIMO天线应用。
其他文献
如何实现面向一维医疗影像的图文分割是本文的主要关注点。近年来深度学习等新兴领域都需要大量的数据集进行科学研究,但是在一些关注于一维医疗影像的科学研究中,往往都是在一维数据上进行更为细致的划分。现有有关二维医疗影像分割一维内容算法的相关研究相对较少,因此研究面向一维医疗影像的图文分割算法对于推动自动化提取数据集以及后续的相关研究至关重要。全文基于茂名市人民医院提供的纸质心电图数据集,分别围绕非监督学
本文主要研究了紧致度量空间上自由半群作用的拓扑r压和拓扑压,主要内容可以分成以下两个部分:第一部分,在紧致度量空间上我们分别用张成集和分离集定义了自由半群作用的拓扑r压,并由此得到自由半群作用的拓扑r压的相关性质.最后我们给出本文的第一个主要结果:自由半群作用的拓扑r压和拓扑压的关系,即自由半群作用的拓扑压是拓扑r压当r趋于0时的极限.第二部分,主要阐释本文的第二个结果:若fi,i=0,1,…,m
随着装配式建筑越来越广泛的应用,蒸压加气混凝土配筋板材(ALC板)需求量大增,但由于其多孔结构及生产过程在180℃-200℃、1.0 MPa左右条件下进行蒸压养护,使得蒸压加气混凝土在钢筋防锈上具有天然的劣势。涂层材料能将钢筋与锈蚀物质隔绝开来,是目前最常用的钢筋防锈方法。根据ALC板钢筋防锈涂层材料的性能要求,地聚物材料在粘结强度、抗渗性、耐热性、耐化学侵蚀性上具有良好的表现,但存在柔韧性差、收
建筑装配化建设在工业化背景的推动下已取得了较多的成果,其中装配式装修在近些年逐渐被关注,国家和地方政府纷纷出台相关文件与鼓励政策来促进装配式装修的应用与发展,装配式装修成为了我国装配化建设发展过程中十分重要的一部分。但目前对于装配式装修应用的研究多集中于住宅建筑,公共建筑领域涉猎较少。在公共建筑中,连锁酒店客房装修与装配式装修具有较高的关联性。主要原因有:第一,酒店连锁化程度的不断提高为装配式装修
超级电容器是一种介于传统电容器与电池之间的新型电子器件,具有功率密度大、充放电快及循环稳定性好等优点,是储能器件领域的研究热点。然而其能量密度与电池还存在一定差距。超级电容器的核心组成部分为电极,因此开发具有高比电容、高能量密度和长循环寿命的电极材料是构筑高性能超级电容器的关键所在。导电聚合物水凝胶作为新型超级电容器电极材料,同时具备导电聚合物的高导电性、高比电容和水凝胶独特的三维互联网状结构,解
沼气作为一种绿色可再生的能源,因其中CO2含量高而难以广泛利用,造成资源浪费和环境污染。水合物法气体分离技术,具有操作简单、无污染等特点,可用于脱除沼气中的CO2。利用水合物法进行沼气脱碳的研究对于沼气的开发利用具有重要意义。本文探讨了利用水合物法、吸收法、膜分离法进行沼气脱碳的能量消耗,并根据不同技术的优缺点进行工艺耦合,并以能耗指数(ECI)为评价指标进行了优化。本文选择广州某垃圾填埋厂的填埋
随着半导体工艺节点的迭代升级,商用芯片因其高性能低成本等特点,越来越受到航天任务的青睐。空间环境中高能粒子穿过半导体材料的敏感区,产生的单粒子效应会使搭载商用芯片的航天器暂时故障甚至永久报废。作为最常用的两款商用芯片,先进可靠的SRAM型FPGA和高精度高采样速率ADC是顺利进行航天探索的关键一环。以往的SRAM型FPGA单粒子效应测试系统的设计,主要集中在某一工艺节点的单粒子效应研究,对各工艺节
聚酰胺-胺(PAMAM)树状大分子由于体积小、表面易修饰、内部疏水等优点,因此广泛应用于递送药物、基因治疗、生物成像等医药学领域。由于PAMAM具有一定的细胞毒性和溶血性,且在循环过程中易于清除等诸多问题限制了其医学应用。此外,PAMAM具有作为药物输送载体之外的生物学效应,可以在不同细胞系中诱导细胞自噬。由于自噬与肿瘤存在双重关系,这为肿瘤治疗提供了两种截然不同的思路:抑制自噬提高抗癌治疗效果,
图像抠图算法致力于求出给定图像的alpha掩膜,进而提取出图像的前景部分,来实现背景替换等操作。这一技术已经在影视剪辑,图像后期等产业广泛使用。同时,图像抠图算法应用在很多计算机视觉相关任务的数据预处理流程中,如去雾、去雨等,也受到了学术界的广泛关注。尽管借助深度学习技术,近年来的图像抠图算法效果得到了很大的提升,但图像抠图算法中存在的一个缺陷一直没有得到成功解决,那就是需要额外先验知识来辅助算法
由于传统能源的不可再生性以及人们对能源的需求越来越大,传统能源的枯竭已成为不得不面对的问题。新能源开始不断被人发掘利用,由风电、光伏等分布式电源组成的微电网成为了人们关注的焦点。然而由于风、光等可再生能源受环境影响具有很强的随机性,对微电网的能量优化管理带来了巨大的挑战。人工智能技术近几年来发展迅速,随着新的智能算法不断出现与更新,相关技术也开始应用于电力行业。本文针对微电网的强随机性问题,将深度