论文部分内容阅读
碘化浸出液的处理是碘化浸金工艺的后续部分,包括金的回收、碘和碘液的回收与循环利用。目前,相关理论研究和处理工艺尚未成熟,若能得出最佳处理方案,可促使碘化法浸金实现工业化应用。本研究采用电沉积法处理碘化浸出液。研究内容为:(1)确定电沉积金电解槽的最佳参数;(2)采用单因素试验和响应面优化确定最佳电沉积金工艺条件,进行电沉积金动力学模型分析,并测定反应前后的浸出液成分含量,探讨浸出液成分对金沉积效果的影响;(3)针对阳极碘回收和碘液循环利用进行研究,得出最佳处理方案。主要结论如下:(1)通过单因素试验考察离子交换膜种类、阴极材料、阳极材料和两极板间距离对金沉积效果的影响,得出采用阴离子交换膜、石墨板作阳极、钛板作阴极,两极板间距离60 mm,电解2 h后,金沉积率和电流效率分别为95.04%和5.12%;(2)通过配制的Au-I2-KI溶液作阴极液进行电沉积金实验,得出当阴极液金起始浓度20 mg·L-1,阳极液碘质量分数0.6%,阳极液n(I2):n(I-)1:8,槽电压12 V,初始pH值3~8,电解时间2 h时,金沉积效果最佳,金沉积率可达96.25%。再进行实际碘化浸出液电沉积金实验,结果证明其工艺具有可行性。采用响应面法优化电沉积金工艺,优化后工艺条件下金沉积率均值为96.43%,与预测值96.6%非常接近,证明响应面优化电沉积金工艺模型真实可靠。电沉积金过程符合拟二级动力学模型。实际碘化浸出液中的Ag+和Cu2+会影响金的沉积效果。电沉积金过程仍存在电流效率过低等问题;(3)当阳极液碘质量分数为0.1%~0.8%时,碘回收率仅为70%以上,即利用共沉积原理对碘进行回收具有局限性。当阴极液金浓度大于40 mg·L-1时不利于碘的回收。碘液循环利用实验得出当阳极液碘量较少时(如阴极液金浓度为20 mg·L-1时,阳极碘质量分数低于0.6%),碘液可以作为电解液进行循环使用。该论文有图47幅,表15个,参考文献86篇。