论文部分内容阅读
环氧树脂(EP)具有很好的绝缘性、防潮性、化学稳定性、耐腐蚀性以及机械加工性能等,其在涂料、粘合剂和家电设备等领域都有广泛的应用。然而,常用的环氧树脂是易燃材料,生烟量大,难以满足某些特定应用领域的防火性能要求。因此,新型的无卤阻燃环氧树脂则成为了阻燃高分子材料领域中的一个重要研究方向。本文针对以上问题,开展了以下研究工作:1.首先,以二茂铁、乙酰氯和次氯酸钠为原料合成了单体1,1′-二乙酰基二茂铁(DAF)和1,1′-二茂铁二甲酸(Fc(COOH)2);其次,以三聚氯氰、甲醇和氨水为原料合成了单体2-甲氧基-4,6-二氯均三嗪(MDCT)和2,4-二氨基-6-甲氧基均三嗪(DAMT);最后,将Fc(COOH)2和DAMT作为原料,通过溶液聚合的方法合成了二茂铁-三嗪环双基阻燃齐聚物(PFCTR)。探索了DAF和Fc(COOH)2的反应条件,并利用FTIR和1H NMR对单体结构进行了表征。此外,摸索了阻燃剂PFCTR的合成条件,通过FTIR和1H NMR对其结构与聚合度进行了表征,估算聚合度为13。采用热重-红外(TG-IR)联用技术、热裂解气相色谱-质谱联用(Py-GC/MS)技术以及SEM研究了PFCTR的热稳定性和热分解机理。结果表明,阻燃剂在高温下分解形成了CO2、CO、NH3、H2O以及铁的氧化物等物质,在700 ℃时的残余量仅为9.2 wt%。2.探讨了阻燃剂PFCTR、聚磷酸铵(APP)以及APP-PFCTR体系对EP的阻燃作用。研究表明,当PFCTR添加量为5 wt%时,阻燃EP的极限氧指数(LOI)为28.3,通过UL-94 V-1级别。控制助剂的总添加量为4 wt%,分别研究APP与APP-PFCTR对EP的阻燃效果。结果表明,只添加APP对EP基本没有阻燃效果。然而,当PFCTR添加0.5 wt%,APP添加3.5 wt%时,LOI可达到30.5,且通过UL-94V-0级别。利用锥形量热仪(CONE)对每个体系中的最佳样品(EP、FR-3、FR-7以及FR-10)进行燃烧性能测试,结果表明,阻燃剂的加入使得EP的热释放、烟释放以及燃烧时尾气中CO的释放速率和浓度都有大幅度的降低,大大提高了EP的阻燃性能,其中以FR-10最为显著。同时,也证实了PFCTR与APP之间确实存在着很好的协效阻燃效果。3.利用TG-IR方法研究了阻燃EP体系的热降解历程,并探讨了阻燃EP在气相和凝聚相中的阻燃机理。结果表明,PFCTR与APP的结合不仅大大提高了残炭率,而且产生了CO2、CO、NH3以及H2C=NH等不燃气体和芳烃化合物,起到了气相阻燃的作用,从而改善了EP的阻燃性能。此外,通过SEM测试更为直观的观察了阻燃EP体系的成炭情况,结果表明,FR-10体系炭层外表面最为致密、光滑,可有效阻隔热和氧气的传递。