论文部分内容阅读
永磁同步电机(Permanent Magnet Synchronous Motor,PMSM)具有体积小、结构简单、功率因数高、效率高、损耗小等一系列优点,在许多高性能的控制场合被广泛地应用。由于PMSM本身是一个强耦合、非线性的复杂系统,控制策略的复杂性导致它的变频调速系统的设计与开发也较其他电机调速平台更具难度。此外,传统的PMSM变频调速平台中相互独立的仿真环节和硬件调试给调速系统设计和开发增加了大量的工作,这已经不符合当前永磁同步电机调速系统开发的需求。为了简化永磁同步电机调速系统的设计与开发,适应当前工业控制的需要,本文采用了基于模型设计的方法,并基于磁场定向控制(Field-Oriented Control,FOC)策略,结合DSP高性能控制芯片,设计与开发了一套PMSM变频调速控制系统,主要研究工作包括:首先,详细介绍了永磁同步电机的结构和工作原理,分析并推导了包括Clarke变换、Park变换等坐标变换的方程及PMSM在各坐标系下的动态数学模型。在这些基本理论的基础上,再着重研究和分析了磁场定向控制策略及空间矢量脉宽调制SVPWM的基本理论,为永磁同步电机的变频调速系统设计与开发提供了理论基础。其次,根据磁场定向控制理论以及基于模型设计的开发方式,在MATLAB/Simulink平台上搭建永磁同步电机磁场定向控制的电流、转速双闭环控制系统的控制模型,详细分析各个控制子模块的功能及配置原理。基于模型设计的开发方法,可以有效地解决传统开发方法中的周期长、代码维护难、成本高、效率低的弊端,通过自动代码生成技术和实时的仿真测试,大大提高了开发的效率和系统的稳定性。最后,基于矢量控制的方法,设计与开发永磁同步电机变频调速控制系统的硬件平台。控制平台以DSP TMS320F28335为控制核心,并结合采用奥尔堡大学设计的CPLD控制板改良的变频器和包括滤波模块、采集模块、调理模块等模块,为上述了控制软件提供了仿真和实验分析的硬件载体,建立成一个完整的PMSM变频调速实时仿真平台,并在该系统上进行PMSM变频调速的实验,验证了FOC控制的正确性和可靠性。