残余应力及载荷模式对系泊链环应力分布影响

来源 :大连理工大学 | 被引量 : 0次 | 上传用户:feboy
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
长期处于恶劣海洋环境中的系泊链环在风、浪、流的共同作用下,不仅会受到浮式平台往复运动产生的轴向拉伸载荷作用,还会受到平面外弯曲和扭转等复杂载荷作用。链环在某些关键位置的应力可能超出原有设计强度而发生破坏,导致系泊系统失效,进而使整个海洋平台的安全受到威胁。系泊链环生产过程的热处理工艺及试验载荷加载都会产生残余应力,进一步影响链环服役时的应力特性和安全性能。因此,在考虑残余应力的前提下,对链环进行不同载荷模式下的应力分析具有重要意义。本文旨在通过数值模拟得到系泊链环热处理过程及试验载荷产生的残余应力,在此基础上对链环不同载荷模式下的应力分布和接触特性进行分析,以研究不同角度平面外弯曲及扭转载荷作用下链环应力的差异性,以及不同来源的残余应力对链环应力的影响。基于上述研究目标,首先,借助有限元软件Ansys Workbench 18.2建立R4级76mm无挡链环有限元模型。采用间接法模拟热处理过程残余应力,发现链环外部表现为压应力,内部则表现为拉应力。依据DNV规范施加试验载荷,发现在链环接触区域边缘和截面中线位置存在较大的拉伸残余应力,肩部区域和冠部区域存在较大的压缩残余应力。然后,分别建立不考虑残余应力,仅考虑试验载荷残余应力以及同时考虑热处理及试验载荷残余应力三种有限元模型,研究不同来源残余应力对轴向拉伸载荷作用下链环应力分布的影响。结果表明,热处理及试验载荷产生的残余应力在链环容易发生破坏的关键位置对应力分布具有显著影响。最后,分析三种模型在不同角度平面外弯曲及扭转载荷作用下应力分布、接触状态和疲劳寿命的差异。结果表明,三种模型等效应力在小角度平面外弯曲作用时近似相同,但比只有轴向拉伸载荷作用时偏大。链环远离弯曲方向一侧肩部区域的等效应力随弯曲角度增加而增大,另一侧肩部区域变化趋势相反。三种模型的等效应力随扭转角度增加而增大,原因在于随着扭转角度的增加,链环的接触状态逐渐由黏着转变为滑移。通过对比同一载荷特定角度下的链环应力特性,发现都是模型B的等效应力最大。在2°弯曲角度下,模型A和模型C的等效应力分别比模型B小5.8%和15.4%;在10°扭转角度下,分别小7.4%和7.1%。这是由于试验载荷会使得接触区域边缘产生拉伸残余应力,使等效应力增大;而热处理过程会在链环表面形成压缩残余应力,抵消一部分拉应力,使整体的等效应力减小。疲劳寿命计算结果显示,链环整体疲劳寿命的变化趋势与等效应力变化趋势相反。因此,在数值模拟中对试验载荷和热处理过程都应予以充分考虑。
其他文献
几丁质是在自然界中除了纤维素之外,生成量为第二大的多糖类物质。它是由β-1,4糖苷键连接N-乙酰葡萄糖胺结构单元聚合而成的直链聚合物,广泛存在于昆虫的表皮、气管和中肠,能够保护昆虫免受外界侵害。参与几丁质新陈代谢的酶在昆虫的发育中起着重要作用,因此受到人们的广泛关注,是重要的潜在农药设计的靶标。AA15家族的裂解性多糖单加氧酶(LPMO)是近几年才发现的一类依赖铜离子的酶,参与昆虫几丁质的降解过程
胡萝卜素在动植物生命活动中均扮演着重要角色,探究胡萝卜素的形态、分布、含量等参量对于植物育种和动物健康都有重要意义。目前研究植物胡萝卜素的主要方法有拉曼光谱法、色谱法和透射电镜法,但这些方法存在无法定量分析、样品准备过程中使用溶剂使胡萝卜素的结构发生改变等诸多问题。非线性光学成像手段以其无损、有良好穿透深度以及可以原位活体检测等优点,被广泛应用于动植物组织的研究。本文主要运用非线性光学成像手段结合
在催化裂化设备中常使用多管旋风分离器对高温烟气中的颗粒物进行分离收集,但这种旋风分离器在实际生产中常出现排尘口堵塞、锥管壁磨蚀等情况,间接导致烟气轮机出现叶片结垢、振动等问题。因此,本文采用数值模拟的方法,研究轴流导叶式旋风分离器的结构参数与性能指标的关系,提出合理的单管旋风分离器结构参数方案,并考虑结构参数对流场的影响权重,结合正交试验法和直观分析法,输出单管结构参数方案,并对比两种优化方案,进
体内时钟与外界时钟同步对机体正常运行至关重要。在昼夜紊乱环境下,机体通常需要若干天来调整内在的时钟,来与外部时钟同步。但短期数次时差如何影响小鼠的行为节律,是否会逐渐增加小鼠的适应能力;以及对健康的影响尚不清楚;同时,在另一种常见的昼夜紊乱--恒定黑暗环境下,小鼠体内各组织中内源性生物钟基因的动态振荡过程也不清楚。本文研究内容如下:(1)在两个月内给予C57BL/6小鼠多次提前6小时时差(+6,即
细胞是构成生命体的最小生命单元,胞内纳米颗粒(生物分子、囊泡、病毒及人工纳米颗粒等)通过扩散机制进出细胞,生命得以获得外界营养,同时将代谢产物输送到细胞外,随细胞外液进入血液,进而代谢排出体外。而细胞内细胞骨架的网络结构会限制纳米颗粒的扩散运动,导致扩散不同于简单流体中纳米颗粒的布朗扩散。此外,细胞骨架参与的主动输运会引起胞内流动,多重效应影响下胞内纳米颗粒的扩散特性异常复杂,迄今难有准确认识。有
磁重联已经被广泛认为在空间和实验室等离子体中的某些爆发的不稳定性现象中起着关键作用,但是在非对称的磁场或密度、剪切流以及导向场等影响下的重联过程很少被深入理解。由于在空间观测上的实际困难以及在理论解析上的局限性,因此数值模拟成为理解重联最常用的方法。本文在霍尔磁流体力学模型下研究了外加剪切流下的非对称磁场重联过程,得到了以下结果:1、在外加剪切流下的非对称重联位型中,研究发现X点可以在X正方向上运
与无机半导体材料相比,有机半导体材料具有高吸光系数、制备工艺简单及成本低等优势,被广泛应用于自旋电子和光伏光电等领域。在自旋电子领域,基于有机半导体的自旋电子器件存在着电导率不匹配和金属电极向有机层扩散的两大问题,通过对有机小分子材料进行掺杂而制备有机磁体是其解决方案。过渡金属掺杂有机小分子材料具有室温铁磁性,但金属团簇的影响使得磁性来源解释不清。在光伏光电领域中,有机-无机杂化钙钛矿材料因其直接
分子定向和取向是分子反应动力学的重要研究课题之一。随着现代激光技术的发展,研究人员可以利用各种激光技术控制分子的定向和取向。本文利用含时量子波包理论方法,研究了利用超短激光脉冲控制NaI分子的定向动力学。提出了利用周期量级太赫兹脉冲和半周期太赫兹脉冲控制NaI分子定向的理论方案。主要研究工作如下:(1)提出了利用周期量级太赫兹脉冲控制NaI分子定向的方案。采用含时量子波包方法精确求解包括转动和振动
作为碳元素的邻近元素,硼在元素周期表中是第一个具有p电子的元素,具有独特而复杂的特性,包括缺电子、较短的共价半径、容易形成多中心键等。因此,探索低维硼及硼基纳米材料的结构和物理化学性质,受到科学界的广泛关注。在纳米团簇中,寻找高稳定的硼基团簇并实现其宏量制备一直是实验和理论研究的热点。然而,作为一种缺电子元素,硼团簇很容易被氧化,在脱离真空时容易变得不稳定。而过渡金属元素由于具有丰富的d电子被认为
随着能源问题的日益加重,核能由于其高效,清洁等优点受到广泛关注。核反应堆安全性一直是关注的焦点,尤其是日本福岛核事故发生后,如何提高核反应堆的安全性能成为核能系统研究人员的努力方向。作为防止核燃料泄露的第一道屏障,包壳管的完整性显得尤为重要。然而,随着反应堆的运行,燃料和包壳管会发生化学相互作用,增加燃料泄露风险的同时还会影响燃料的使用效率。为了缓解燃料和包壳管的化学相互作用,在管内壁进行涂层是一