论文部分内容阅读
由于在主动热防护中所使用的吸热型碳氢燃料逐渐面临热沉不足、易结焦等问题,限制了其进一步的应用,ZSM-5是以Si、Al以及O元素为骨架的分子筛催化剂。传统HZSM-5的催化性能存在缺陷,本文针对吸热型碳氢燃料及传统催化剂所面临的问题,采用以HZSM-5为基底改性的催化剂提高催化能力,同时提出采用氢等离子体线下清洗金属壁面的焦体,具体展开了以下方面的工作:使用实验的方法,应用超临界正癸烷以及添加工业级催化剂HZSM-5的正癸烷冷却加热的金属管,对管壁结焦以及催化剂HZSM-5结焦进行了研究,发现无催化剂时管路完全被焦体堵住的出口温度为728℃,加入工业HZSM-5后正癸烷易裂解,但管路被堵的出口温度提前降至687℃,同时催化剂HZSM-5本身很快因结焦而失活。为了研究金属壁面及HZSM-5催化裂解结焦的过程,采用分子动力学及量子力学密度泛函方法对HZSM-5催化裂解及吸附过程进行研究,发现了HZSM-5可以促进正癸烷的裂解,但具有催化活性的Br?nsted酸位点和破坏的骨架硅容易吸附碳氢产物;采用密度泛函的方法得到Br?nsted酸位点最多可以吸附两个氢,骨架硅的破坏程度越高,越容易吸附碳氢化合物,证实了分子动力学的部分模拟结果;又利用分子动力学对正癸烷在铁金属表面的催化裂解结焦过程进行研究,发现金属壁面促进正癸烷裂解,最终沿着金属表面纹理形成直链碳结焦前驱体。根据HZSM-5催化裂解和吸附特性的计算结果得到,在改性催化剂时,可以考虑如何改变Br?nsted酸位点上的氢的脱附能力,权衡脱附酸位点氢的能力是催化剂改性的关键,同时稳定催化剂骨架结构也非常关键。针对燃料热沉不足、易结焦以及HZSM-5不良的催化作用,使用NiO对HZSM-5进行改性,将NiO纳米颗粒杂化薄层成功地包裹在商用HZSM-5上形成复合结构(标记为HZSM-5/NiO),显示出对HZSM-5酸度特性显著的调节能力,促进正癸烷的超临界裂解。所制备的催化剂使NiO与HZSM-5表现出协同效应,显著降低了整体酸度,从而改变了正癸烷的裂解路径,具有有效的抗结焦性能。HZSM-5/NiO减缓了许多自由基加成反应,并通过单分子裂解反应生成更多的气态产物,产气率与热沉呈正相关。加热管完全被焦体堵塞时,催化剂使正癸烷的热沉从728℃时的3.77 MJ/kg提高到780℃时的4.59 MJ/kg。在HZSM-5中引入纳米结构金属氧化物将协同调节复合材料的酸度,导致改变催化裂解路径和程度、气体产物、热沉及超临界正癸烷的结焦行为。NiO的改性直接改变了Br(?)nsted酸位点氢脱附的能力,且保护骨架的结构。通过催化剂形成焦体较为松散,配合流体进行除焦是另一种思路。本质上,仍然是改变了改性催化剂的酸性位密度和能力,但作用的效果不同,机理也不同。为了将催化与流场等联合共同抑制结焦,采用Co3O4对HZSM-5进行改性,应用等体积浸渍法在直径2.4±0.5μm的工业HZSM-5上形成接近2D的平均厚度为15 nm的Co3O4纳米片,经Co3O4纳米薄片改性后,Br?nsted/Lewis酸度比率从8.00降低到2.79,Co3O4纳米片与HZSM-5之间的协同催化效应有利于产生更大的产气率和更高的烯烃含量,从而导致比基准燃料正癸烷更高的热沉。0.1 wt%催化剂催化裂解正癸烷,加热管完全被焦体堵塞时,在758℃时可产生高达4.64 MJ/kg的热沉,远高于裸HZSM-5在687℃时的2.99 MJ/kg和纯正癸烷在728℃时3.77 MJ/kg。同时,Co3O4纳米片与商用HZSM-5的巧妙结合可以有效抑制复合材料外表面的结焦沉积,其所催化形成的焦体松散而容易被流体冲刷带走,从而在高温下得以高效催化裂解,获得更高的吸热。而后对这两种改性的催化剂进行对比和评价。即使使用了催化剂扩展了碳氢燃料的吸热能力,延缓了结焦,但也不能完全抑制而不结焦。对于已经结焦的金属表面,采用氢等离子体进行线下清洗的研究。首先使用石墨代替结焦体,研究等离子体清洗的过程,发现辉光放电等离子体含有较强化学清洗作用,清洗的气体产物中CH4是主要的气体产物,同时存在C2H6、C2H4、C3H8和C3H6。等离子体引起的化学反应主要通过在石墨缺陷位置发生加氢反应,阴极具有明显的被清洗腐蚀的特征,在接地极发现许多边界模糊的直径小于1微米的无定形碳颗粒,清洗中的等离子体发现以波长388和776 nm为中心的显著激发光。通过对清洗后的铁和铜衬底进行研究发现成键强度取决于金属基底的材料特性。最后结合气体产物分布通过自由基反应分析等离子体气体反应过程。并在相同的工况下,使用等离子体对真实金属壁面的焦体进行清洗研究,得到良好的清洗效果。