外卖会员系统的设计与实现

来源 :北京交通大学 | 被引量 : 0次 | 上传用户:fire1977
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
付费会员的经济模式近年在国内各个利于飞速发展,通过付费成为会员可以享受更优惠的价格和更高平直的服务,付费会员的经济模式正成为消费的新常态。付费会员的经济模式通过个人和企业奖励一种正式的、可持续的关系,企业为会员推出了更加优质的服务,会员增加该企业的消费总额和频率。互联网领域会员经济随着生态的竞争而迎来了爆发增长。一方面,全球互联网会员已形成规模,亚马逊的会员用户数在2018年超过1亿。另一方面,随着国内由“增量竞争”转为“存量竞争”的阶段,国内会员经济迎来爆发增长。平台化通过对业务能力抽象化、原子化,解决由于快速迭代开发中烟囱式设计带来的能力重复建设、难以维护的问题,业务能力抽象化建设共享、稳定、通用的业务能力,业务能力原子化提供了可编排能力并使得业务快速组合、试错、迭代。平台化会员系统架构上高内聚、松耦合,支持各种会员业务的快速接入,数据可用性高,资源容易集成,极大地减少了重复功能建设和维护带来大量重复的资源浪费,利于业务迭代与发展。本系统后端语言主要是用Java,后端总体框架是SpringBoot,持久层采用Mybatis框架,数据库使用了 MySQL,缓存使用了 Redis,ZooKeeper为系统提供给了分布式配置、同步服务和命名注册的能力,通过Thrift作为服务间通信桥梁,Kafka作为消息队列,并通过限流、熔断、服务监控、一致性校验等技术保证服务的稳定性、可靠性。本系统内部使用微服务架构,以业务功能单元为基础,是去中心化的分布式架构,降低了系统复杂性,使得系统易维护并且易扩展。本系统从会员业务的角度出发,根据业务通用的基础能力分为:会员召回、会员履约和会员运营。(1)会员召回模块:负责提供灵活、易扩展的会员商品、会员身份、会员活动、会员权益的召回能力,根据不同的场景、不同的用户身份提供不同的召回策略。(2)会员履约模块:负责提供通用的会员履约能力,可以通过普通充值履约、兑换码兑换履约和外部直充等入口进行履约,履约包括会员身份履约、权益履约。(3)会员运营模块:负责提供一站式会员运营服务,包括精准营销、权益配置、会员卡配置、商品配置和活动配置。目前,本系统已经在线上运行,结果表明平台单量不断提高的同时,平台补贴率不断下降,获得了较大的收益,符合预期。
其他文献
随着信息技术迅速发展以及网络服务的普及,数据规模实现井喷式发展,社会逐步进入了信息化的大数据时代。作为解决信息过载的重要方法,推荐系统得到了迅速地发展,同时也在人类生产、生活的各个方面发挥着重要的作用。多行为推荐系统作为推荐系统的一个分支,虽然起步较晚,但是由于多行为数据的丰富性及应用场景的广泛性,近些年来多行为推荐系统也得到了社会各界人士的青睐。目前多行为推荐系统在如何合理利用行为之间多等级偏好
计算机断层成像(Computed Tomography,CT)因为具有无损、高分辨、没有重叠影像等诸多优点,被广泛应用于安检、医疗和工业等领域。通常,传统CT系统需要完全角度投影数据来进行图像重建。然而,由于实际条件的限制,有时无法获得完全角度投影数据,由此引出了有限角度投影数据CT图像重建问题。理论上,有限角图像重建问题是一个不适定的问题,且这种不适定性会随着缺失角度的增加而变得更加严重。因此,
随着科学技术的快速发展,海量数据充斥着人们的生活,信息过载问题日益严重。推荐系统逐渐成为人们获取个性化信息的有力工具,帮助人们在海量信息中获取有用信息,并且已经成功应用到各行各业。基于协同过滤的推荐方法通过利用用户和项目的行为数据来学习用户和项目的特征表示,逐渐成为主流的推荐方法。但是现实世界中用户-项目评分矩阵具有高度稀疏而且分布不均匀的特点,当推荐系统仅考虑用户和项目之间的评分矩阵信息时,其性
随着云计算、大数据、物联网等技术的飞速发展,互联网应用的种类层出不穷,引发了数据规模的爆炸式增长,也带来了严重的信息过载问题。作为解决“信息过载”的重要手段之一,推荐系统已经得到广泛应用。但是传统的推荐系统存在冷启动、用户-项目评分矩阵的极度稀疏性等问题。除了推荐系统的评分信息外,用户对项目的评论信息也包含了丰富的用户兴趣和项目特征信息,有助于更准确地学习用户和项目表示。近年来,将评论融入推荐模型
按照课程标准的要求,就核心内容来说,统编《道德与法治》九年级教材主要涉及国情部分。因为这一部分与初中学生的实际生活有一定距离,且涉及较多比较抽象的概念和政策,有不少教师在教学时往往觉得无从下手。有的教师则以保证科学性为由,采取照本宣科的教学方式,将本应生动活泼的道德与法治课变成了学生非常排斥的"训教与口号"课。如
期刊
在城市轨道交通飞速发展的今天,要保证列车安全运行,关键不仅在于对轨道交通系统中基础设施病害的及时检修,相关核心工作人员如列车司机的专业性和机动性也尤为重要。司机能否在列车到站、出发、关门等重要节点做出正确手势是衡量司机工作态度和质量的重要标准。不正确的手势判断将直接威胁列车运行安全,因此对司机手势动作的监控识别十分重要。然而目前该工作主要依赖人工完成,不仅效率低下,而且造成人力资源浪费。因此需基于
随着深度学习技术的发展,目标检测技术的检测精度和速度不断被刷新。目前目标检测技术已被应用于生活的各个场景中,如:智能监控、智慧交通和无人驾驶等。然而目标的时空尺度变化仍然是检测中的难点,因此本文从多尺度特征的角度对这些问题展开了研究,利用空间多尺度特征研究了小目标难以检测的问题,在此基础上又研究了检测算法轻量化的问题,最后利用时间多尺度特征对视频目标检测中帧间信息的有效利用进行了研究。本文的具体研
疲劳识别技术可应用于疲劳驾驶预警、空中交通管制员疲劳监测、重型器械操作员疲劳提醒等领域,以规避疲劳作业潜在的巨大安全隐患。针对现有疲劳识别方法欠缺考虑疲劳个体差异性及依赖于实验室数据的不足,本文研究了真实场景下基于自适应阈值眨眼检测及Xgboost的疲劳状态识别问题。有效的特征提取技术是实现可靠、有效的疲劳状态识别的前提。作为提取眼部疲劳特征的关键技术,现有眨眼检测方法存在较少考虑眨眼个体差异性导
车辆重识别技术也被称为车辆跨镜头追踪技术,其主要目的是从不同摄像头拍摄到的大量道路监控视频中检索属于特定车辆的全部图像。该技术需直接从车辆的视觉外观中提取到有判别性的特征,但是跨摄像头进行图像匹配时车辆图像往往来自于不同的视角,而在不同的视角下车辆的外观变化很大,因此跨视角匹配已经成为车辆重识别任务中一个重要的挑战:一方面,多个不同视角下同一车辆外观差异性大,导致车辆有着显著的类内差异;另一方面,
智能制造在信息系统的性能需求和功能需求方面对目前的制造业提出了崭新的或者更高级别的要求,通过对影响信息系统重要性能—鲁棒性的因素进行分析,根据智能制造信息系统的信息层和物理层之间的深度协作建立智能制造信息系统网络模型,描述智能制造信息系统级联失效过程,从网络可用性角度基于蚁群算法进行仿真实验,提高系统未发生故障的点在级联失效情况下寻找最短路径的能力,从而改善系统鲁棒性。本文主要从以下三方面进行创新