论文部分内容阅读
数据挖掘是涉及数据库、统计学等学科的一门相当活跃的研究领域,是从数据集中识别出有效的、新颖的、潜在有效的以及最终可理解的模式的非平凡过程。预测是数据挖掘技术中重要的组成部分。 税收收入预测一直是税务部门的一项重要工作,它决定着税收计划的制定,而税收计划的制定是经济活动的一项重要内容。针对目前税收计划的制定仍以基数加预计增长率这一方式进行的现状,要求尽快建立起一套以税收收入预测为基础的科学预测的体系,从而掌握组织收入的主动性。因此利用统计学及数据挖掘的方法科学正确的进行税收预测工作对于税务部门具有非常重要的意义。 本文对数据挖掘的相关概念、过程,统计学的相关知识进行了介绍,将数据挖掘应用于税收预测中,通过对大量历史数据的记录和与之相关的各种数据的分析,使用回归和滚动预测方法建立预测模型,对税收收入情况进行了预测,实现了对2005年度税收收入年度和分月预测。并对各预测模型进行了实验结果的对比分析,指出滚动预测方法较回归预测方法能更好地进行税收收入分月预测,从而更好地指导税收计划的完成,为科学地建立税收计划进行了有效地探索,并为税收计划工作提供了重要的科学依据。 本文的主要工作是对郑州市国税局征管系统中的征收数据进行挖掘分析,建立回归和滚动预测模型。通过对税收收入问题的研究与实现,从中探索了一些可行的方法,这为税收预测问题提出了一个新的视角。本课题的成果对于税收收入预测体系,特别是基于回归预测和滚动预测的方法具有一定的参考价值。