论文部分内容阅读
随着化石能源的日渐枯竭和环境问题的日益凸显,寻求和开发一种清洁、廉价、高效的可再生能源已经变得十分迫切。自然界中存在大量且易获得的小分子物质,例如H2、O2、N2、CO2、H2O等。利用小分子的定向转化合成高附加值的化学品、燃料和化肥等受到了广泛关注。该研究对能源的可持续发展以及绿色化学都具有重要的现实意义,但仍极具挑战。电催化转化技术可在许多可再生能源存储和利用设备中实现电能与化学能之间的高效转换,从而为在温和条件下实现小分子的利用和转化提供了巨大的机会。然而这些小分子化学性质相对稳定,如何设计和制备廉价且高效的催化剂对能源和催化领域的科学研究乃至产业化过程都至关重要。单原子催化剂因其100%的原子利用率和独特的电子特性已广泛应用于电化学能量转换和存储的前沿领域。不仅为从原子尺度认识催化反应的机理提供了理想的模型和研究平台,而且有望成为具有巨大应用潜力的新型工业催化剂。众多小分子中,H2和NH3两类小分子在工业生产中具有重要的应用价值。其中,H2作为重要的可再生清洁能源之一,以能量密度高、燃烧产物零污染和资源丰富等优点备受到各国政府和研究机构的青睐,被视为是未来低碳、清洁、可持续发展能源系统的潜在候选者。而NH3是工业生产中第二重要的化学物质,已广泛应用于制药、合成纤维、化肥生产以及能源转换体系。与其他能量载体相比,由于NH3含有17.6 wt.%的氢且以液态形式存在,被认为是氢的理想存储介质。更重要的是,NH3是重要的无碳能源载体,在分解时不会排放任何二氧化碳。H2和NH3的合理利用和高效定向转化可以为解决当今日益严重的能源危机和环境问题开辟了一条切实可行的新道路。鉴于此,本文基于单原子催化剂的电催化合成H2和NH3展开了研究。详细地探讨了单原子催化剂的普适性合成策略;系统地研究了单原子催化剂表面对小分子电催化活化与定向转化;深入地讨论了单原子催化剂结构与电催化性能的构效关系;探究和揭示了反应机理与调控规律,从而实现用于电催化转化小分子的单原子催化剂的理性设计。具体研究内容如下:(1)设计和制备低成本和高活性的酸性产氢催化剂的需求是十分迫切的,但仍面临巨大的挑战。本文首次将锚定在Ti3C2Tx MXene纳米片上的Ru单原子催化剂(Ru-SA/Ti3C2Tx)用作酸性Hydrogen evolution reaction(HER)、Oxygen evolution reaction(OER)和Oxygen reduction reaction(ORR)三功能电催化剂。电化学研究结果显示,在电流密度为10 m A cm-2时,Ru-SA/Ti3C2Tx催化剂的ORR半波电势分别为0.8 V vs RHE,HER和OER的对应的过电位分别为70 m V vs RHE和290 m V vs RHE。基于Ru-SA/Ti3C2Tx催化剂酸性全水解仅需要1.56 V电池电势就能达到10 m A cm-2的电流密度。组装的H2-O2燃料电池的最大功率密度高达941 m W cm-2。理论计算表明,孤立的Ru单原子催化剂中的Ru-O2位点可以有效地优化反应过程中反应物/中间体的吸附和降低决势步的能垒,从而高效低提升其酸性HER、OER和ORR动力学性能。(2)基于氧官能化的Ti3C2Ox MXene纳米片上高度分散的Rh单原子催化剂(Rh-SA/Ti3C2Ox),本文设计和制备了一种新颖的自供能双产氢系统,用于高效地制氢。该双功能Rh-SA/Ti3C2Ox催化剂对全p H值的析氢反应和肼氧化反应均展现出显著的催化活性。基于Rh-SA/Ti3C2Ox催化剂,通过结合Zn-H2电池和全肼解反应单元组装了自供能双产氢系统。该系统实现的产氢率高达45.77 mmol h-1。密度泛函理论研究表明,原子分散的Rh单原子不仅可以使HER反应中吸附氢的自由能具有更高的热中性,而且还能够大大降低*NHOH中间体脱氢的自由能垒。(3)通过电催化技术利用N2在环境条件下电合成NH3是替代传统Haber-Bosch过程的重要课题。但目前无指导性的盲目搜寻电催化剂不能有效提高N2还原产NH3率。对此,本文采用第一性原理计算发现在单个金属位点上连续出现的垂直端*N2和倾斜端*NNH分子是实现高性能N2还原的关键。通过靶向分子,可以发现并大量合成具有Ag-N4配位的Ag单位点。在环境条件下,该催化剂在HCl溶液中显示出创纪录高的产NH3率(270.9μg h-1 mg-1cat.或69.4 mg h-1 mg-Ag1)以及较高的法拉第效率(21.9%)。在连续20个循环反应测试中,NH3产率保持稳定,并且还原电流密度在60 h内几乎没有衰减。(4)为了实现电化学NO还原合成NH3的策略,本文通过在B和N共掺杂的碳纳米管上组装金属单原子(Al、Mn、Fe、Cu和Nb)合成了一系列的单原子催化剂。电化学研究发现,该合成的一系列单原子催化剂对环境电合成NH3表现出较高的NO还原催化活性。特别地,Nb单原子催化剂的NH3产率高达8.2×10-8 mol cm-2 s-1,该值比已报道的最好N2还原反应合成NH3的产率高出了两个数量级,且接近美国能源部提出的工业电合成NH3的目标。理论计算表明,这种高效NO还原合成NH3的性能源自Nb-SA/BNC催化剂中的单个Nb B2N2位点,它不仅能促进了NO分子的吸附,还能有效降低决势步的能垒。