【摘 要】
:
随着科学技术发展的日新月异,国防现代化亦飞速发展,隐身性能已经成为先进飞行器和其他军事装备不可或缺的重要元素。频率选择表面(Frequency Selective Surface,FSS)可以有效减小天线和飞行器的雷达散射截面(Radar Cross Section,RCS);利用空间电磁波干涉相消原理和电磁对消技术,能够有效对抗电磁干扰和缩减武器平台的雷达回波。基于上述动机,本文主要在以下几个方
论文部分内容阅读
随着科学技术发展的日新月异,国防现代化亦飞速发展,隐身性能已经成为先进飞行器和其他军事装备不可或缺的重要元素。频率选择表面(Frequency Selective Surface,FSS)可以有效减小天线和飞行器的雷达散射截面(Radar Cross Section,RCS);利用空间电磁波干涉相消原理和电磁对消技术,能够有效对抗电磁干扰和缩减武器平台的雷达回波。基于上述动机,本文主要在以下几个方面展开研究工作。首先,基于FSS的基本理论和FSS天线罩的实际应用,研究了阿基米德螺旋形FSS和平面等角螺旋形FSS两种FSS结构的工作机理。在此基础上,结合工程应用,研究设计了两种螺旋形的多层FSS结构,分析了结构参数对其性能的影响,仿真结果表明其具有宽通带、低通带插入损耗的特性,三层阿基米德螺旋复合型FSS以及三层组合型FSS,拓宽了双层FSS的阻带工作带宽。制作了双层阿基米德螺旋复合型FSS和双层组合型FSS的实物并进行了实验研究,验证了双层螺旋形FSS宽通带、低插损的特性和仿真结果的吻合性。随后,结合空间电磁波干涉相消的基本原理以及电磁对消产生的机制,提出了电磁对消超表面的几种设计思路。在此基础上,为了提高FSS结构在频带上的动态范围,引入了可重构电磁对消超表面概念。通过加载射频开关,改变微带电路的可重构结构,实现了其工作频带可以动态变换的功能,改进了电磁对消超表面的动态工作带宽。仿真结果表明,该可重构电磁对消超表面既能够对工作频带内水平和垂直极化的入射波具有良好的空间滤波特性,又能根据需要敏捷的切换工作频段。制作了11×11可重构电磁对消超表面阵列实物,实验验证了其频率可重构特性原理和方法的正确性,仿真与实验吻合。最后,研究设计了电磁对消与天线一体化超表面。通过天线和电磁对消超表面的控制开关,保证了电磁对消功能和天线功能灵活切换,突破了隐身结构与天线结构一体化的难题,实现了无线电静默时天线罩隐身,工作时天线罩透波的功能。在此基础上,仿真设计了一分十六的微带功率分配馈电网络;优化了4×4电磁对消与天线一体化超表面阵列的设计,验证了其兼顾天线功能与电磁对消功能的特性。
其他文献
在微波模块功能密度高、体积质量小的需求下三维多层芯片技术是一个有效可行的解决方案,而垂直互连可靠性是制约该技术应用的主要方面。国内外对垂直互连可靠性的研究主要集中在信号连接方面,在机械连接方面的研究较少。本文主要以基板内部铜通孔机械可靠性、基板间球栅阵列焊点机械可靠性两个方面研究基于低温共烧陶瓷(Low Temperature Co-fired Ceramic,LTCC)的微波模块的垂直互连机械连
5G移动通信系统包括多个频段。论文针对5G无线通信系统的几个主要频段,开展单频和双频天线的研究,研制了不同频段4款实用的天线单元与阵列,具有较高的性能。第一款为磁电偶极子结构天线单元,工作频带覆盖了3.4 GHz-3.6 GHz和4.8GHz-5.0 GHz两个频段,驻波比(VSWR)小于1.5的阻抗带宽在两个频段上分别超过200MHz,辐射性能稳定,具有低后向辐射,低交叉极化以及几乎相同的E面和
温度因素影响着光声光谱的检测能力、现场应用及实用化。探究温度对光声光谱技术的影响、搭建一套可用于检测高温气体的光声光谱系统及获得不同温度下光声信号与被测气体温度的关系,可以为光声光谱检测技术的温度特性研究及高温区应用奠定基础。本文基于光声光谱检测及有限元数值仿真原理,针对实现25℃~300℃光声光谱温度特性研究的需求:阐述了温度对光声光谱检测的影响并完成了光声光谱温度特性仿真;采用有限元数值仿真方
近年来大气雾霾已引起社会公众的广泛关注,PM2.5排放控制成为亟待解决的问题。本文针对燃煤电厂脱硫后烟气中PM2.5超低排放问题展开研究,通过在湿式电除尘器前加装声波团聚器使PM2.5细颗粒物发生团聚长大,提高湿电对细颗粒物的脱除效率,烟气经过湿电之后再进入水媒式烟气-烟气热交换器(MGGH),经过烟气冷却器的冷却除水作用促进烟气中水溶性离子的脱除,减少可溶性离子进入大气后形成细颗粒物,进一步降低
随着器件工艺尺寸进入到纳米级别,制造工艺参数波动对电路性能的影响越来越严重,成为限制芯片良率的重要因素之一,使得在设计阶段需要能够准确预测参数波动影响下的电路良率。传统的蒙特卡罗方法在评估电路失效事件时需要大量采样并仿真而无法接受。为了减少仿真量,近年来提出了一种自适应重要采样(Adaptive Importance Sampling,AIS)的快速良率评估算法,但在同时评估Bit cell电路等
本文围绕实现具有低成本、小型化、高灵敏度等特性的太赫兹单脉冲接收系统展开,针对雷达系统有着对单脉冲馈源小型化、可集成的未来需求,基于硅微机械制备工艺,研究太赫兹频段高增益、小尺寸的微小透镜天线馈源技术,探索高集成度、低剖面、低损耗的和差比较器结构。本文主要的研究内容和结果如下:1.研究了基于间隙波导技术的和差比较器。首先从间隙波导理论出发,基于色散模式法计算获得电磁带隙和通带范围,接着采用间隙波导
智能音视频终端在多媒体会议系统、远程教室等系统广泛应用,而基于USB的声卡接口模块是其和计算机系统进行音频流传输的关键部件。作为便携式音频终端接口,USB声卡模块可以满足多种场景的应用需求,且相比于传统声卡拥有更好的音质表现。USB声卡以USB2.0协议为基础,实现了UAC(USB Audio Class)协议框架和HID接口。本文设计并实现了基于TMS320C6748高性能DSP的USB声卡模块
数据转换器是信号处理中连接数字信号和模拟世界的接口,是混合信号处理系统的关键模块。随着诸如光载无线电和宽带通信技术等领域高速信号处理应用的需求,对模数转换器(Analog to Digital Converter,ADC)的速率和带宽要求越来越高。研究单核超高速超宽带的ADC对于高速信号处理等相关工程领域有重要意义。本文首先介绍模数转换器的基本原理与主要衡量指标,对比分析常用高速ADC架构的优缺点
随着计算机视觉领域研究的不断深入,实例分割已经逐渐成为当下计算机视觉领域的研究热点之一。实例分割任务的目标是对图像中的所有前景像素点做所属实例的划分。在计算机视觉领域,依赖于手工提取特征的传统方法已经逐渐被深度学习所取代,基于深度学习的实例分割方法也逐渐成为实例分割任务的主流解决方案。本文以深度学习理论为基础,对现有的基于深度学习的实例分割方法做了分析,并且基于FCOS目标检测网络提出了一种新的单
MEMS是以微电子技术为基石发展起来的多学科交叉综合的新兴研究领域,其中一个重要分支及应用领域为射频微电子机械系统(RF MEMS)。RF MEMS器件得益于其低功耗、小型化、优良微波性能、高集成度等诸多优势,在诸多领域有着广泛的应用前景。在射频系统中,可调谐微波衰减器作为调节信号电平的高频器件需求度很高。它们在自动增益控制放大器、宽带矢量调制器等射频电路中广泛应用。同时,可调谐微波均衡器能够调节