论文部分内容阅读
砷化镓异质结双极型晶体管(GaAs HBT)在高频时具有功率密度大、线性度好、效率高等优点广泛应用于射频功率放大器(RF PA)的设计。近年来,RF PA的集成度日益增强导致功率密度不断上升。而GaAs材料导热系数小,放大器因而产生严重的热效应,致使HBT晶体管温度上升,其器件电学性能发生变化,从而恶化射频功率放大器的功率输出特性,成为制约其进一步发展的瓶颈。迫切需要对射频HBT功率放大器的热效应机理、相关电热耦合模型以及电路设计方法展开深入研究,这对设计功率输出特性良好的射频HBT功率放大器具有重要意义。本文从射频HBT功放电路芯片热设计思路出发,详细研究了射频功放的热传导机制、GaAs HBT晶体管温控特性及并联多管电热耦合关系等热效应问题,揭示了功放热效应的内在机理,建立了精确的分布式热电耦合模型,提出了热电性能均改善的自适应功率单元技术,并优化了放大器版图结构,完成了一款高性能射频功率放大器芯片的设计。论文主要创新成果如下:1、建立了分布式电热耦合模型,指出功率放大器实际工作中晶体管的温度呈非均匀分布特性,且温度分布特性取决于晶体管热源(直流功耗)大小及散热环境(所处位置、指间距等)优劣,这为功放热设计提供理论参考。2、提出了自适应功率单元技术,基于该技术,功放中的晶体管在工作过程中可随输入功率的增加逐渐打开,功放效率高,晶体管平均直流功耗减小,从而热源减小,可有效抑制晶体管温升,改善热效应。3、提出了采用镇流电阻网络实现自适应功率单元技术,基于镇流电阻的负反馈作用,改善了放大器的非线性特性。4、优化了自适应功放的版图结构,在不改变电气连接条件下将镇流电阻小的晶体管置于散热条件好的外侧,而镇流电阻大的晶体管置于散热条件差的内侧,并将指间距设计成由外向内逐渐减小的趋势,使晶体管温度曲线呈现均匀且低值的分布特性。5、基于AWSC 2μm GaAs HBT工艺设计了一款2.4GHz射频功放。在5V的电源电压条件下,输出功率为32dBm,效率达48%,与传统放大器相比,提高了5%左右。在频间距为600KHz条件下,IMD3在25dBm输出时可改善10dB。在热效应发生后,其输出功率变化仅为0.5dB,下降幅度远小于传统结构放大器。