论文部分内容阅读
自从碳纳米管被发现以来,由于其独特的结构引起了人们的广泛关注。碳纳米管具有优越的力学性能,优良的化学稳定性和热稳定性,良好的电性能和生物相容性。由于碳纳米管间较强的相互作用及不溶于任何溶剂,极大地制约了其应用。因此,对碳纳米管进行改性以提高其在溶剂及基材中的分散性,具有十分重要的意义。目前为止,已报道多种碳纳米管修饰方法,通常分为物理修饰与化学修饰。本论文采用化学方法中的“向碳纳米管接枝”方法,通过硼酸酯化反应,将双羟基封端的聚苯乙烯(PS)接枝到硼酸功能化的多壁碳纳米管(MWNTs)表面,实现对碳纳米管修饰。该修饰方法的特点在于接枝的可逆性,可以劈下-接上多次重复。此外,本文对碳纳米管凝胶的合成也进行了探索,首先合成含二羟基丙烯酸酯单体和硼酸酯类单体,并将二羟基丙烯酸酯聚合物接枝到碳纳米管上,再与含硼酸单元的共聚物混合,利用硼酸酯化反应合成碳纳米管凝胶。主要研究工作包括以下几个方面:聚合物对MWNTs可逆修饰。先以含二羟基的三硫代碳酸酯[EMP-(OH)2]为链转移剂,采用可逆加成-断裂链转移(RAFT)聚合方法合成双羟基封端的聚合物[PS-(OH)2]。而后利用二溴丁烷将对羟基苯硼酸频哪醇酯接枝到MWNTs表面,去保护后得到硼酸修饰的MWNTs[MWNT-B(OH)2]。通过MWNTs表面的硼酸基团和聚合物链端的双羟基之间的酯化反应,即可将PS接枝到MWNTs表面,同时在酸作用下又能将聚合物“劈”下,实现聚合物对MWNTs的可逆修饰。采用红外光谱(FTIR)和热重分析(TGA)对小分子和聚合物修饰的MWNTs进行了表征。TGA结果表明硼酸的接枝率可达到0.222 mmol/g,聚合物的接枝率为0.041 mmol/g。此外,采用紫外光谱法研究了PS-(OH)2对[MWNT-B(OH)2]的可逆修饰效果,实验结果表明可逆修饰重复5次以后,聚合物修饰的MWNTs的溶解度基本不变,说明聚合物接枝量基本稳定。另外,MWNTs表面接枝聚合物的“劈”下速率与体系中酸浓度有关。MWNT凝胶的合成。采用羟基保护和硼酸基团保护的方法,先分别合成(2,2,5-三甲基-1,3-二氧己烷)丙烯酸甲酯(TDMA)和4-乙烯基苄基-4-(1,3,2-二氧杂己硼烷-2-基)苯甲酸酯(VBDB)两种新型单体。随后将RAFT试剂键接到MWNTs表明,并通过RAFT聚合反应将PTDMA接枝到MWNTs表面,去保护后即得到聚(3-羟基-2-(羟甲基)-2-甲基丙基)丙烯酸酯(PHHMA)修饰的碳纳米管(MWNT-PHHMA)。同样以EMP-(OH)2为链转移剂,采用RAFT聚合方法合成PVBDB-co-PS,去保护后得到含硼酸单元的共聚物(PVPA-co-PS)。将PVPA-co-PS和PHHMA修饰的MWNTs按一定的比例在溶剂中混合后,通过硼酸酯化反应即可得到MWNTs凝胶。