论文部分内容阅读
随着人们生活水平的不断提高,鸽产品日益受到人们的喜爱。鸽养殖业正值蓬勃发展,鸽的高效养殖越来越受到关注。但鸽不同于其他禽类,其尚处于未完全驯化的饲养状态,已经普遍应用于禽类生产的人工光照措施还未在鸽养殖中普及,光照制度对鸽生产和繁殖的影响及其机制尚不清楚。目前,单色光对禽类影响已有较多研究,包括禽类的繁殖、生长发育和行为、免疫力。由于鸽的生产特性与其他家禽不同,而且存在品种、光源及地域等差异,研究结果不足以指导鸽生产中光照制度的实施。本实验旨在通过设计不同光照制度,监测单色光光照下的鸽生产性能,为寻找适宜于鸽生产的单色光提供参考依据,并进一步利用高通量测序手段揭示单色光影响鸽繁殖性能的分子调控机制。1.本实验进行了不同单色光光照实验(15L:9D),光照强度为15.20±0.651x,研究不同单色光对鸽产蛋性能、乳鸽增重和不同日龄乳鸽的GH、IGF-1浓度的影响。结果发现,红光能够有效地提高鸽产蛋量(P<0.05),但蓝光组鸽产蛋量下降(P<0.05)。与此同时,单色光对28日龄乳鸽的体重无影响(P>0.05);但在1-7日龄阶段,白光促进乳鸽增重(P<0.05);在7-14日龄阶段,红光能够促进乳鸽增重(P>0.05);在14-21日龄阶段,蓝光能促进乳鸽增重(P>0.05);21-28日龄阶段,绿光能够促进乳鸽增重(P<0.05)。利用Elisa方法分析不同日龄乳鸽GH、IGF-1浓度的变化,发现乳鸽体重与GH、IGF-1的关联规律符合其生长变化规律。2.为了既能充分利用单色光效应又能减轻单色光对养殖人员的影响,本研究设计并实施了单色光补光试验。白天自然光照,早晚补红、蓝、绿和白光,并确保光照时长15 h。结果显示,红光同样能够显著提高鸽的产蛋率和降低破蛋率(P<0.05)。在1-101x光照强度下,蓝光组的乳鸽终体重最高(P<0.05);10-201x光照强度下,各光色的乳鸽终体重相近(P>0.05);20 lx以上光照强度下,白光组乳鸽的终体重最低(P<0.05)。将两种光照制度进行比较,从经济的角度而言,单色光补光能够有效的节约生产成本,并且不会对饲养人员造成影响。从专门化生产而言,红光能够提高产蛋量,蓝光能够提高出雏率。3.对不同单色光组鸽卵巢组织进行转录组测序分析,研究单色光影响鸽繁殖性能的信号通路及其作用机制。De novo转录组测序获得了158,080条unigenes,红、蓝和绿光组分别与白光组进行比对,共筛选出296条共有差异基因,其中145条为上调基因。与KEGG数据库中的参考标准途径进行比对,富集程度最高的包括代谢通路、肌动蛋白细胞骨架调节和磷酯酰肌醇-3激-酶-丝氨酸/苏氨酸激酶信号通路。GO分类中的细胞过程、细胞成分和细胞结合是最普遍的。预测潜在SNPs,共获得1,096,649个潜在SNPs,蓝光组的碱基转换比例最高,红光组最低,并且鉴定出了17,419个潜在SSRs。重点关注了与单色光作用息息相关的生物节律通路、细胞周期通路、卵巢类固醇合成通路、类固醇激素生物合成通路和TGFβ信号通路,并初步获得关键基因E2F1、HDAC2、RORβ、PER、BMP15、HSD11B1、 Cytochrome P450、BMPR2和Smad10等。4.对不同单色光组鸽卵巢组织进行了small RNA测序分析,研究单色光条件下,非编码RNA对鸽繁殖性能的调控作用。将红、蓝光组分别与白光组进行比对,共发现17条已知差异miRNA。靶基因在细胞周期、Wnt、MAPK、TGF-β、卵母细胞减数分裂等生殖相关的细胞信号通路中显著富集。miR-200、miR-34和miR-122的靶基因在细胞增殖和凋亡、类固醇激素分泌和排卵等生物过程中富集。可见,在卵巢中高表达的miRNA,如niR-200、 miR-34和miR-122可能通过参与这些信号通路来调控鸽繁殖生理活动。此外,整合RNA-seq和microRNA-seq数据结果分析,miR-34的重要靶基因有E2F3、E2F5和p53,这些靶基因都在细胞周期中发挥重要的调控作用,说明这个miRNA在细胞周期调控中可能发挥重要作用。此外差异基因HDAC2同样在p53依赖的信号通路中发挥调控作用。表明单色光所引起的鸽繁殖性能的变化受到转录组水平及非编码RNA的协作调控。本研究通过将两种测序技术进行整合分析,更加严谨得为全面阐明单色光照引起的鸽繁殖性能变化的相关信号通路及其作用机制奠定基础。