论文部分内容阅读
我国是发展中的海洋大国。海上任何活动,都是在特定的海洋环境中展开的,海洋环境对我国社会、经济的可持续发展有极重要的影响。因此,发展海洋环境监测高技术在国家发展中有十分现实而深远的意义。本文结合国内外海洋监测技术的现状,分析了国内海洋监测领域的不足之处,设计并实现了一个集网络化、智能化、模块化于一体的高性能海洋监测与实时信息发布系统。本文所设计的海洋环境监测系统是针对海洋自然灾害预警的需求及海洋环境参数实时监测的需要,将已有的成熟技术和新的理论、先进的技术成果进行有机的结合,最终建立能够自动、连续、实时监测海洋环境参数,自动传输、存储、处理和分析数据,数据产品自动发布和共享,监测系统远程动态监控的高精度、智能化海洋监测信息系统。文中首先通过分析海洋监测领域中各个环节的结构和关键问题,进行了海洋监测信息系统的功能需求分析。在此基础上,给出了海洋环境监测系统的设计目标和整体架构以及各子系统的功能简介,随后重点介绍了数据监测子系统和嵌入式WEB服务器的实现。为了提高监测系统的自动化程度和监测数据传输的实时性,监测系统在结构上采用三层网络架构,由传感器和浮标以有线方式连接构成数据采集子系统,由浮标和台站以无线方式连接构成数据集成子系统;在数据传输上采用GSM/GPRS无线通讯方式,利用短消息实现监测系统的远程动态控制;在数据格式上利用跨平台、通用资料载体的XML数据存储技术,更好地保持了对海洋监测要素数据类型的精确定义。同时考虑到底层监测设备所处位置以及海洋地理环境的特殊性,监测系统还实现了GPS全球定位功能和嵌入式WEB服务器功能。良好的模块化结构增强了系统的开放性、扩展性和可配置性,提高了整个系统的自动化程度。与传统的人工监测和半自动监测系统相比,该系统无论在数据采集的精确性还是数据传输的实时性、可靠性上都有了很大的提高。为了优化系统的性能,本文还对MDRTDB技术在海洋监测领域应用中进行了研究,针对监测子系统的移动性和无线网络的不可靠、不可预测和频繁断接等特性,引入了动态优先级策略和混合加锁控制机制,从而提高了移动环境下监测数据存储的成功率。最后本文探讨了数据挖掘技术在海洋环境监测领域内的应用。在对模糊理论及聚类分析方法深入研究的基础上,针对基于目标函数的模糊聚类算法—FCM算法的不足之处进行改进,提出IDFCM算法,并将其应用于对赤潮监测数据的分析,取得了良好的效果。