保护层开采下伏煤岩卸压防冲效应及机理研究

来源 :西安科技大学 | 被引量 : 0次 | 上传用户:ludongyan900209
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
保护层卸压开采作为一种区域性防冲技术,在冲击地压矿井被越来越多的推广和应用,但其卸压效应难以测试,未形成成熟的卸压机理,无法为保护层开采对下伏煤岩体卸压防冲的现场实施提供足够的理论和技术支持。本文以葫芦素煤矿近距离煤层群上保护层开采为研究背景,综合运用Matlab理论解析计算、循环加卸载煤岩力学试验、煤岩应力应变演化物理模型试验、保护层开采地质采矿因素数值分析和光纤传感技术现场监测等多种研究手段,研究了近距离煤层群保护层开采下伏煤岩应力场、应变场、位移场的时空演化规律,探究了不同循环加卸载条件下煤岩累积损伤、力学强度和冲击倾向性的变化规律,分析了层间距、采高等因素对保护层开采卸压效果的敏感程度,开展了分布式光纤传感技术对现场保护层开采卸压效果及范围的实时监测应用。本文的主要研究结论如下:(1)理论分析保护层开采过程中不同深度下伏煤岩体应力分布规律。倾向方向,煤岩体的垂直应力在采空区中部最小,向两侧边界煤柱逐渐增大;水平应力在采空区下方为压应力,在区段煤柱下方为拉应力,随着深度增大均减小,与垂直应力变化趋势相反。走向方向,垂直应力分为增压区、卸压区、恢复区,水平应力在采空区侧距工作面越近压应力越大。垂直应力降低幅度大于水平应力,在较低残余垂直应力下,高水平应力对下伏煤岩体形成较高的挤压作用,促进煤岩体变形破坏和高地应力的释放。(2)建立不同循环加卸载条件下煤岩累积损伤、单轴抗压强度、冲击倾向性之间的内在关系,揭示了保护层开采过程中卸载煤岩体结构损伤和力学强度降低的卸压减冲机制。煤岩的累积损伤随加卸载次数、应力的增大而增大,随加卸载速率的增大而减小;循环加卸载作用下煤岩累积损伤增大,单轴抗压强度降低;煤岩的损伤与单轴抗压强度、冲击倾向性呈反比。煤岩冲击倾向性在循环加卸载下减弱,受加卸载应力影响作用一般,受加卸载次数和速率影响作用显著。(3)保护层开采卸压效果受地质采矿因素影响显著。随采高增大,临界卸压最大深度和程度均增大,但采高大于6 m,临界卸压最大深度增幅逐渐减弱;随层间距增大,卸压程度减小,临界卸压最大深度先增大后减小再稳定不变,层间距约20~30 m范围为拐点位置;随工作面面长、层间岩性强度的增大,临界卸压最大深度和程度均减小;地质采矿因素对卸压效果的影响权重顺序为:层间距离>采高>层间岩性>工作面面长。(4)保护层开采降低了被保护层顶板断裂动载能量和高地应力环境。保护层开采过程中下伏煤岩经历了应力集中、释放、恢复的动态过程,导致下伏煤岩裂隙发育和结构完整性破坏,弹性能量释放,为被保护层创造了卸压低应力环境。被保护层采动垂直应力分布曲线整体呈“U”型,开口位置出现应力集中,底部位置出现应力降低。被保护开采时顶板及关键厚砂岩层悬顶破断距离变小,来压步距和强度均降低。被保护层采动垂直应力变化可分为两个类型,距离切眼相对较近区域:“低应力集中区-卸压区-卸压未充分恢复区-卸压稳定区”;距离切眼相对较远区域:“高应力集中区-卸压区-卸压充分恢复区-卸压稳定区”。(5)数值模拟结果表明保护层开采后采空区内矸石垮落具有不均匀性,分为充分垮落压实区和非充分垮落压实区,引起采空区下方被保护层应力恢复状态不同。被保护层垂直应力恢复曲线呈动态变化过程,保护层开采范围较小时,被保护层垂直应力恢复分布曲线为“U”型;保护层开采范围较大时,垂直应力恢复分布曲线由“U”型逐渐转为“W”型;保护层开采范围足够大时,垂直应力恢复分布曲线由“W”型转变为多个“W”型叠加分布。(6)光纤传感技术实现了保护层开采过程中下伏煤岩体(走向95.37 m、倾向128.47 m、垂向36.94 m)卸压规律及卸压范围现场实时监测。光纤监测数据反映了保护层开采过程中下伏煤岩体应力增高压缩变形、应力降低膨胀变形、应力恢复拉变形降低的动态过程;基于光纤应变增量的波动幅度来表征卸压效果,将卸压过程分为三个阶段:卸压开始阶段为40.8 m,卸压活跃阶段为68.3 m,卸压衰退阶段。得到保护层走向卸压角58.7°,倾向卸压角63.6°,卸压滞后距离14.2 m,卸压最大垂距28.4m。基于对近距离煤层群保护层开采的卸压机理、卸压影响因素及卸压保护范围等方面研究,探究了分布式光纤传感技术在监测保护层开采下伏煤岩卸压规律及卸压范围工程领域中的应用,为葫芦素煤矿保护层开采防治冲击地压灾害提供理论和技术指导,从而为矿区安全高效开发奠定基础。
其他文献
移动互联网时代推动了 APP(Application)的发展,APP已经融入到人们的生活,为人们带来了更为便捷的生活体验。视障人群作为使用APP的特殊群体,由于APP设计缺乏针对性,视障人群无法便捷地使用APP并且无法完整地获取APP的信息内容,用户体验并不理想。本文构建面向视障用户APP设计的评价体系,有利于设计师全面考虑视障用户对APP的使用需求,尊重视障用户的感受,辅助设计决策。本文以认知心
量子点(quantum dots:QDs)纳米材料具有光吸收强、尺寸可调、电荷分离速度快和可旋涂成膜等优异特性,是基于CMOS的低成本高性能成像芯片的理想材料。而且量子点具有量子限域效应,使其可通过量子点直径调控带隙、调控响应波长范围,量子点的纳米尺度也适合与其它波段材料集成,成为开发下一代宽光谱成像芯片的潜在候选者。(1)论文研究了 PbS,PbTe,PbSe,HgTe量子点的合成工艺,并采用透
高脉冲能量和窄脉冲宽度的激光放大器在激光加工、激光医疗美容和激光雷达等领域获得了广泛应用。种子源激光器与行波放大结构相结合的主振荡器功率放大(MOPA)技术,既能保证输出的脉冲激光相关特性(如脉宽和重复频率等)与种子源特性一致,又能实现激光输出能量的放大,因此MOPA技术成为激光放大器工程应用中的主要技术。本论文针对医疗美容中对亚纳秒级大能量激光放大器的需求,基于MOPA技术研制了一台采用亚纳秒微
由于人们牙齿健康问题的日益增多,市场对义齿修复的需求急剧增长。义齿修复中的快速个性化的义齿制备具有重要意义。3D打印技术作为一种新型的快速成形技术受世人所瞩目。针对3D打印直接制备义齿时,由于牙齿材料的特殊性,无法直接3D成形义齿及传统制备材料浪费等问题。本文就快速成形牙冠陶瓷铸型制备金属义齿,提出基于冻结浆料选区激光固化的3D方法与陶瓷铸型的制备相结合,对坯体的固化效果、粗糙度、抗弯强度、平面度
高熵合金一般由5种或5种以上的元素组成,且各主元原子分数范围为5%~35%。高熵合金因其较高的混合熵,原子扩散的迟滞性以及鸡尾酒效应等,使其自身具有高强度、高硬度以及耐腐蚀等优异性能。本文以FeMnCoCr系高熵合金为研究基础,采用间隙C原子和置换Mo原子进行微合金调控,使用X射线衍射(XRD)、电子背散射衍射技术(EBSD)、扫描电子显微镜(SEM)、能谱仪(EDS)以及透射电子显微镜(TEM)
随着我国制造业的兴起,高速切削成为了发展的重点,对切削刀具的要求也随之增高,陶瓷刀具以其优异的力学性能成为了高速切削理想选择之一,而传统的“试凑法”设计陶瓷刀具时,需要耗费大量时间来优化烧结工艺,导致陶瓷刀具的更新换代迟滞。而通过计算机建模,从微观甚至纳观对陶瓷刀具材料的组织演变过程进行模拟,指导陶瓷刀具的设计和制备,能够较大程度节省人力、物力以及材料的损耗。元胞自动机法是一种通过元胞的变换来表达
反应扩散方程和Navier-Stokes方程在物理,应用数学,化学,生物学,经济学及许多工程问题中有着非常广泛的应用.然而,线性反应扩散方程不能描述化学,生态学及人口动力学等领域中出现的时间滞后现象,为了研究此现象,我们推导出了新的模型—时滞反应扩散方程组,研究了当扩散系数很小时解的长时间行为及扩散和时滞的影响,并证明了在一定条件下系统行波解的存在性,在一定条件下解决了时滞反应扩散方程组的行波解是
当前,导轨是铜基复合材料的热门应用之一,其不但有高导电、高强度的要求,还有耐磨性、抗电弧烧蚀性及耐腐蚀性等性能的需求。现铜基复合材料大都采用合金化、固溶强化、形变强化等方式来提升力学性能、改善显微组织结构。导轨材料为适应更苛刻的工况条件(如大工作电流、高速率磨擦等),需要更高的强度、导电性、耐磨性、抗电弧烧蚀性等性能。本文针对目前存在的需求,提出了表层颗粒增强铜基复合材料与芯部高纯铜材料进行梯度复
自从Shor算法的发明以来,量子信息学引起了人们极大的关注和兴趣。本文讨论了如何在光学腔系统中实现量子信息处理过程和制备光学器件。所谓量子信息处理包括量子态传输以及量子逻辑门的实现,以及量子纠缠态的制备。本文所考虑的光学腔系统包括腔QED系统和光学机械振子系统。在论文的第一部分,我们讨论了在腔QED系统中实现各种量子信息处理过程的理论方案。我们考虑的系统包括两个空间上远离的光学腔,通过单模光纤连接
学位