论文部分内容阅读
研究背景:蛛网膜下腔出血(subarachnoid hemorrhage,SAH)是一种具有高死亡率和高致残率的脑血管疾病,也是神经外科常见的危急重症,发病后往往具有毁灭性后果。尽管SAH仅占所有卒中的5%-10%,但由于其高死亡率,高致残率和临床预后差的特点给社会带来了沉重负担。尽管研究者们对SAH进行了数十年的研究,但它仍是一个全球性的严重威胁生命健康的问题。迄今为止,SAH造成脑损伤的潜在机制仍不清楚。目前对SAH机制的研究主要集中在早期脑损伤(early brain injury,EBI)和延迟性脑损伤(delayed brain injury,DBI)。但随着针对DBI临床研究的失败,研究人员已开始将研究重点转向EBI。EBI是指颅内血管破裂出血后,72小时以内脑组织所出现的一系列病理生理性事件,是一个非常复杂的病理生理过程,所涉及的分子机制也是多种多样,其中神经炎症被认为是造成早期脑损伤的一个重要分子机制。研究证明TLR4介导的神经炎症在SAH后早期脑损伤阶段发挥着重要作用。TLR4可通过与两个调节促炎因子基因表达的不同衔接蛋白(My D88和TRIF)相互作用,从而激活两条平行的信号通路来启动转录因子的应答,引起炎症因子的释放。纳洛酮((+)-naloxone)是吗啡的结构类似物,近年来研究发现他除了可以解救麻醉性镇痛药急性中毒和急性乙醇中毒、拮抗麻醉药物中毒导致的呼吸抑制及催醒作用外,还可作为TLR4的抑制剂,起到抗炎作用。然而对于纳洛酮是否可用于SAH后的早期脑损伤治疗却未有人报道。因此,本研究拟通过构建SAH大鼠模型用以探究纳洛酮对于SAH后早期脑损伤过程中的抗炎及神经保护作用。研究目的:本研究的目的是通过生物信息学分析结合基础实验的方式探究TLR4在蛛网膜下腔出血早期脑损伤中的作用机制,以及纳洛酮的抗炎和神经保护作用。研究方法:本研究首先采用生物信息学分析对SAH大鼠基因表达数据集进行分析,鉴定出了与SAH早期脑损伤相关的差异表达基因(differentially expressed gene,DEGs)和分子通路,并构建SAH大鼠模型,采用RT-q PCR、Western blot、免疫组化/荧光等实验对生信分析结果进行验证。然后,在SAH细胞模型中,通过si RNA技术干扰My D88及TRIF的表达,采用RT-q PCR、Western blot、流式等实验方法探究TLR4激活NF-κB的具体分子通路。最后,构建SAH大鼠模型,采用Western blot、免疫荧光、TUNEL染色等实验方法检测TLR4通路相关蛋白,探究纳洛酮的抗神经炎症及神经保护作用机制。研究结果:1.采用生信分析SAH大鼠基因表达数据集,在SAH组中共筛选出173个DEGs,包括153个上调基因和20个下调基因。对筛选出的DEGs做富集分析,鉴定出TLR通路在SAH中发挥重要作用。采用q PCR、Western blot验证了生信分析结果,并发现SAH后TLR4和NF-κB表达显着升高,并在48 h达到峰值。免疫荧光结果表明SAH后TLR4主要在小胶质细胞和神经元中被激活并强烈表达,而在星形胶质细胞中很少表达。2.我们采用BV2、N9、原代神经元/小胶质细胞构建体外SAH模型,并采用si RNA干扰My D88及TRIF的表达,结果发现与SAH组相比,My D88的敲减降低了NF-κB的表达,减少了IL-1β、IL-6、TNF-α等炎症因子的释放,同时也抑制了神经元的凋亡。TRIF在SAH后虽有增多,但敲低TRIF后并不能影响NF-κB及炎症因子的表达。实验结果证明了在SAH后的早期脑损伤中IL-1β、IL-6、TNF-α炎症因子的释放是由TLR4-My D88-NF-κB通路介导的,而非TRIF通路。3.与SAH组相比,纳洛酮治疗可明显改善SAH大鼠神经功能障碍,减轻脑组织水肿。同时,给予纳洛酮治疗可显著降低TLR4、My D88以及NF-κBp65的表达,抑制IL-1β、IL-6和TNF-α炎症因子的释放,减少了SAH后脑组织神经元的凋亡。以上结果证实了纳洛酮在SAH后早期脑损伤中具有神经保护作用。研究结论:1.SAH后TLR4主要在小胶质细胞中被激活并强烈表达。2.TLR4/NF-κB信号通路在SAH后的早期脑损伤中发挥着重要作用。3.在蛛网膜下腔出血早期脑损伤过程中TLR4以My D88依赖的信号通路激活NF-κB,促进炎症因子的释放。4.纳洛酮可抑制蛛网膜下腔出血后早期脑损伤过程中TLR4/My D88/NF-κB通路介导的神经炎症,从而起到神经保护作用。