论文部分内容阅读
耦合腔行波管是最常见的一种大功率输出行波管,被广泛应用于如警戒雷达、火控雷达、搜索雷达等大功率的场合。但因为自身固有结构的特点,耦合腔行波管非常容易产生自激振荡,严重影响行波管的性能。耦合腔行波管在工作过程中可能会产生很多种自激振荡,如前向波振荡、返波振荡以及带边振荡等,其中最难消除的就是带边振荡。目前最常用的一种消除带边振荡的方法就是在耦合腔行波管慢波结构耦合槽的两侧分别加上两个圆柱形吸收小腔,这种带吸收小腔耦合腔行波管能够有效的抑制带边振荡的产生,有效提升行波管的输出功率。本文主要围绕带吸收小腔耦合腔行波管理论与技术展开研究,主要的研究内容包含以下三个方面:1.研究了休斯型耦合腔行波管慢波结构的高频色散、耦合阻抗以及衰减特性,然后又深入研究分析了耦合腔腔体结构参量(如耦合槽张角、耦合槽宽度、腔体周期等)对腔体高频特性的影响规律,这些分析研究为后面带吸收小腔结构耦合腔行波管的研究提供了基础。2.从理论上分析耦合腔行波管极易产生带边振荡的原因以及条件,然后简单介绍了带吸收小腔耦合腔行波管的结构特点及工作原理,并对这种结构的高频特性以及场模式做了分析,并解释了带吸收小腔结构能够抑制带边振荡的原因。最后又深入分析了吸收小腔结构参量(如吸收小腔深入腔体深度、吸收小腔圆心角度等)对腔体色散特性的影响,并以此为基础简单介绍了基于961H休斯型耦合腔行波管的吸收小腔的设计流程。这些分析研究为后面带吸收小腔耦合腔行波管高频等效线路模型的研究提供了基础。3.基于耦合腔行波管高频结构的特点,介绍了最常用的Curnow等效模型,并深入推导了基于Curnow模型的高频色散以及耦合阻抗的解析计算公式。提出利用ADS仿真软件的方法来求解高频等效电路的色散特性,并验证了这种方法的正确性。利用ADS仿真色散的方法,总结出了等效电路中电容、电感等元件参量对腔体高频色散特性的影响规律,在此基础上分析了带吸收小腔耦合腔行波管高频结构等效线路模型,这些研究工作为后来的带吸收小腔耦合腔行波管的注波互作用计算提供了理论基础。