【摘 要】
:
燃气涡轮发动机作为目前广泛使用的航空发动机之一,风扇、压气机(下文统称为压气机)是其中的两个重要的压缩部件,并且压气机的稳定性决定了燃气涡轮发动机的稳定性。飞行过程中,一旦压气机发生失稳现象,将会对发动机造成毁灭性的影响。研究者们发现,压气机的稳定工作线中存在一条边界,跨过这条边界,压气机将进入不稳定的工作状态。而且,在完全的旋转失速形成之前,压气机中存在小幅值的先兆波,通过抑制先兆波的发展,可以
论文部分内容阅读
燃气涡轮发动机作为目前广泛使用的航空发动机之一,风扇、压气机(下文统称为压气机)是其中的两个重要的压缩部件,并且压气机的稳定性决定了燃气涡轮发动机的稳定性。飞行过程中,一旦压气机发生失稳现象,将会对发动机造成毁灭性的影响。研究者们发现,压气机的稳定工作线中存在一条边界,跨过这条边界,压气机将进入不稳定的工作状态。而且,在完全的旋转失速形成之前,压气机中存在小幅值的先兆波,通过抑制先兆波的发展,可以拓宽压气机的稳定性裕度[1]。这一概念掀起了对失速先兆现象和特性研究的高潮。对于某一台压气机,研究它如何进入失速状态将会变得非常有意义。数值仿真作为研究压气机的主要手段之一,随着计算机技术的发展,逐渐成为研究方法的最佳选择。Day于失速、喘振研究发展的第75周年曾提出,CFD(数值仿真)会是以后压气机的发展中更好的性能预测工具,它拥有更好的建模和更充分的解释实验结果的能力。所以本文采用了目前较为主流的两种数值模拟手段:雷诺平均(RANS)和彻体力方法对压气机的特性和失速点的流场进行了计算和分析。并且最终通过实验验证了彻体力数值模拟方法的准确性和正确性。本文的研究内容主要有以下几点:第一,基于彻体力模型的主要思想,在已有的程序基础之上,通过构建不同的落后角和损失模型,来模拟压气机的稳态特性;又通过引入小扰动,考虑滞后效应,成功的模拟出旋转失速现象;并且耦合了非定常计算模型和一维容腔效应,模拟了喘振时压气机各参数沿轴向的波动,研究了容腔体积和关阀门速度对喘振环的影响。第二,本文使用雷诺平均数值模拟方法(商用CFD)对课题组自研单级压气机进行了建模和数值仿真,探究了单级压气机在设计转速下的工作特性,稳定边界点的位置,以及分别研究了压气机中两种非稳态现象:旋转不稳定性和旋转失速。并且探究了该台压气机失速发生的形式和失速团的传播特征等;第三,使用彻体力建模的方法,分别研究了单级压气机、两级压气机、跨音风扇的转子的稳态特性和动态特性。并且为了证明彻体力模型计算的可靠性,对已有实验条件的两级压气机进行了特性实验和失速点动态信号的采集,将最终的失速过程计算结果与实验结果进行了对比,二者所得特性基本一致,失速团的传播频率与实验相同,都为42%。
其他文献
燃气轮机作为热力能源设备,在电力,航空和舰船领域都有着不可替代的作用。而燃烧室的冷却,严重影响着燃气轮机的工作性能和寿命。燃气轮机向着高温、高效、低污染的趋势发展,同时对燃烧室的冷却也提出了新的挑战。燃气轮机燃烧室体积较大,流动换热特性沿程变化剧烈,分布规律复杂,使得单一冷却结构难以满足其冷却要求,因此其冷却结构包含多种冷却形式,包括气膜冷却、冲击冷却、肋化通道等几种高效冷却方式。为了使不同冷却结
复合材料在轻量化、低碳化的背景之下,由于其高比刚度、高比强度的性质,被交通运输部门广泛采用,尤其在飞机结构件和航空发动机零部件制造中尤为突出。准确预测复合材料在不同受载工况下的力学行为及损伤模式对构件的设计至关重要。由于基体材料的塑性特征、微裂纹等因素的影响,许多复合材料承载时表现出一定的非线性力学行为。因此本文以航空常用的T700/TDE86纤维增强环氧树脂基复合材料为研究对象,考虑其弹塑性特征
碳化硅颗粒增强铝基复合材料由于力学性能优异且容易制备,在航空航天领域的应用越来越广泛。目前已经应用到航空发动机压气机静子可调导流叶片上,叶片的振动疲劳损坏是常见的故障,针对碳化硅颗粒增强铝基复合材料叶片等复杂结构开展疲劳强度及疲劳寿命研究具有重要的理论意义和工程价值。针对具有非均匀应力场的SiCp/Al复合材料结构,基于SiCp/Al复合材料的疲劳寿命及疲劳强度等疲劳性能,建立SiCp/Al复合材
2.5维编织结构树脂基复合材料具有整体性能好、抗分层能力强、材料/结构一体化和可设计性突出等优点,有望在我国新一代大涵道比涡扇发动机的风扇和压气机中得到应用。当前有关2.5维编织树脂基复合材料的研究多集中在静态力学和疲劳性能方面,准确分析预测该类复合材料结构的动力学特性是使其迈向工程实际应用需突破的关键技术之一。本文针对2.5维编织树脂基复合材料平板的动力学特性开展仿真与试验研究,主要包括如下内容
为了提高航空发动机的推重比与整机效率,需持续提高热端部件内部结构的温度、增大压气机的增压比,这导致用于对热端部件进行冷却的冷气品质降低、冷气量逐渐减少,再加上现有的航空发动机复合材料承温能力无法满足热端部件的温升要求,使热端部件的冷却面临严峻的挑战。涡轴发动机中的回流燃烧室是典型的热端部件,其内部与高温燃气直接接触的内部型面曲率大,结构紧凑,易于烧蚀,严重影响燃烧室的寿命,亟待施以高效的冷却手段。
如果说制造业是社会物流的总体需求,是国民经济的主体,那么物流行业则在国民经济发展中占据着不可替代的重要地位。当前,以人工智能为代表的现代科学技术活跃于各行业,智能制造已成为中国走向强国的重要手段。在科技快速发展的大背景下,物流实现智慧升级,智慧物流成为了智能制造的重要支撑。智慧物流与智能制造相辅相成、共同发展、互相促进,为实现中国进入制造强国行列的大计,两业融合发展势在必行。在此背景之下,物流专业
本文针对一种可用于一体化加力燃烧室凹腔结构的扇形喷嘴,在加力环境下开展其雾化特性的试验和数值模拟研究。随着航空发动机加力燃烧室性能需求的提高,直射式喷嘴存在短距离内雾化效果不均匀、容易积碳、燃烧联焰效果较差等方面的缺点无法满足新一代一体化加力燃烧室凹腔内点火性能的需求,而扇形喷嘴具有在扇形面内雾化均匀且雾化角度可控的优点使其非常适合作为一体化加力燃烧室凹腔点火喷嘴使用。目前掌握的燃油喷嘴雾化特性经
随着科学技术的不断发展,航空发动机的技术与日俱增,其控制系统也越发的先进,逐渐由机械液压式控制发展为全权限数字电子控制。由于数字式电子控制具有极为突出的优越性,目前发达国家最新研制的发动机几乎都是采用全权限数字电子控制。但是,数字式电子控制的抗电子干扰能力较差,考虑到现代战争中电子干扰技术的应用,机械液压式控制作为备份控制仍有使用价值。另外,即使控制系统采用全权限数字电子控制,它也只能代替原液压机
航空发动机在服役期间极易遭遇冰雹、鸟和金属外物等撞击,冲击载荷在向发动机后端传递时经过了大量的螺栓安装边,受到连接部位的接触、摩擦和预紧力等非线性因素影响,导致结构动力学响应呈现出较强的非线性特征,对发动机的结构性能监测和部件的抗冲击设计带来较大的困难。因此,进行螺栓连接结构冲击载荷传递特性的研究十分必要。本文采用试验与数值模拟相结合的方法,以航空发动机上的螺栓连接结构为研究对象,开展螺栓连接动力
离心压气机作为一种重要的增压装置,凭借其压比高、体积小、功率密度高、结构简单、可靠性高的优点,广泛应用于各类中小型航空发动机。随着技术的不断发展,航空领域对高性能离心压气机提出了越来越高的要求,单级离心叶轮的总压比越来越高,下游扩压器承担着对高速、不均匀、非定常的叶轮出口气流减速增压的艰巨任务。本文基于教研室自主开发的高精度CFD程序NUAA-Turbo2.0,使用SST湍流模型和相位延迟法,对Z