核压力容器用大锻件SA508-Ⅳ钢疲劳性能的研究

来源 :北京科技大学 | 被引量 : 0次 | 上传用户:wllzjw
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
核电站发电与其它发电方式相比具有安全、高效、经济和环保等特点,因此越来越受到关注。核反应堆压力容器是核电站的重要组件,它长期服役于高温、高压和中子辐照等恶劣环境下。此外,核压力容器在服役期间会遭受来自启/停堆、紧急停止和温度波动等过程带来的循环热应力影响,因此ASME规范将核压力容器在服役期间遭受的疲劳损伤做为一个安全考核标准。SA508-Ⅳ钢作为新一代核反应堆压力容器的候选材料,弥补了现役材料SA508-Ⅲ钢淬透性差和低温韧性不足的问题。大锻件SA508-Ⅳ钢的尺寸为φ2000mm× 700 mm(壁厚),远超以往核压力容器的尺寸。壁厚的增加会导致核压力容器在调质热处理时出现壁厚效应:表面由于冷速大而形成马氏体,心部由于冷速小而形成粒状贝氏体。不同显微组织会导致不同的力学性能和疲劳性能。此外,调质热处理工艺是核压力容器应用之前必不可少的热处理步骤之一,而粒状贝氏体中的M/A岛在调质热处理过程中会分解为贝氏体铁素体和细小碳化物,显微组织演化对材料的力学和疲劳性能具有决定性的影响。核压力容器的锻件属于大型锻造,混晶是锻造过程中常出现的缺陷之一。因此,本文首先利用热压缩试验研究了铸件SA508-Ⅳ钢的锻造工艺,以便获得均匀的显微组织,为后续疲劳试验做准备。主要研究内容和结论如下:(1)利用热压缩试验研究了 SA508-Ⅳ钢的锻造工艺。热压缩试验是在温度为950-1250℃,应变速率为0.001-1 s-1,真应变为0.7的条件下进行。根据热压缩实验结果计算出SA508-Ⅳ钢的激活能为328.73 KJ mol-1。根据真应力-真应变曲线建立了 SA508-Ⅳ钢的本构方程和动态再结晶方程。根据流动应力-应变数据绘制出SA508-Ⅳ钢的热加工图。通过热加工图和显微组织的分析确定出SA508-Ⅳ钢的最优锻造工艺:温度为1050-1175℃,应变速率为0.01-0.1 s-1,在此区间锻造出的晶粒均匀细小,晶粒尺寸为18-62 μm。(2)分别研究了具有马氏体和粒状贝氏体显微组织的SA508-Ⅳ钢力学性能和疲劳性能。力学实验结果表明:马氏体SA508-Ⅳ钢的抗拉强度和冲击韧性分别为830 MPa和158 J,粒状贝氏体SA508-Ⅳ钢的抗拉强度和冲击韧性分别为811 MPa和115 J。马氏体SA508-Ⅳ钢比粒状贝氏体SA508-Ⅳ钢具有更好的抗拉强度和冲击韧性,马氏体冲击断口表现为韧窝断裂,而粒状贝氏体则表现为脆性断裂。疲劳实验结果表明:在应变幅±0.45%的条件下,马氏体SA508-Ⅳ钢的疲劳寿命为2717周次,粒状贝氏体SA508-Ⅳ钢的疲劳寿命为1545周次,马氏体材料的疲劳寿命高于粒状贝氏体。马氏体材料具有比粒状贝氏体更少的裂纹萌生点、更窄的疲劳条带间距和更多的大角度晶界体积分数。更少的裂纹萌生点意味着更少的疲劳裂纹,更窄的疲劳条带间距意味着更慢的裂纹扩展速率,更多的大角度晶界体积分数则可以更有效的阻碍疲劳裂纹扩展,这些原因导致了马氏体SA508-Ⅳ钢具有更高的疲劳寿命。(3)研究了回火温度对粒状贝氏体SA508-Ⅳ钢显微组织演化的影响以及显微组织演化对其力学性能和疲劳性能的影响。粒状贝氏体试样分别在595℃、620℃、630℃、640℃和675℃回火15 h进行调质热处理。实验验结果表明当回火温度为595℃时,强化相M/A岛发生分解。回火温度升高到630℃时,更多的强化相M/A岛发生分解,导致软化相贝氏体铁素体基体增多,M/A周围应力集中被释放,裂纹萌生形核点减少,材料的抗拉强度从781 MPa降低到738 MPa,韧性由112 J增加到126 J,在应变幅为±0.45%的条件下,疲劳寿命从2145周次增加到2853周次。回火温度升高到675℃时,达到了 SA508-Ⅳ钢的AC1温度,回火后的显微组织为马氏体、铁素体加少量未溶的碳化物,马氏体结构提供强度,材料的抗拉强度增加到863 MPa;裂纹萌生在铁素体相内和马氏体与铁素体相界处,裂纹萌生形核点增多,材料的韧性降低到57 J,疲劳寿命降低到1509周次。(4)研究了回火时间对粒状贝氏体中M/A岛分解的影响以及M/A岛分解和分解产物对其力学性能和疲劳性能的影响。粒状贝氏体试样在630℃分别回火保温30 min、2 h、5 h、15 h和45 h进行调质热处理。在回火30 min时,晶界处的M/A岛优先发生分解,材料的抗拉强度为906MPa,冲击韧性为75 J,在应变幅为±0.45%的条件下,疲劳寿命为1257周次。随着回火保温时间的延长,更多的强化相M/A岛分解为贝氏体铁素体基体和细小的碳化物,应力集中被释放,裂纹萌生形核点减少,裂纹扩展速率降低,导致材料的韧性和疲劳寿命增加;软化相贝氏体铁素体基体增多,导致材料的抗拉强度降低。当回火时间增加到45h时,M/A岛完全分解为贝氏体铁素基体和细小的M3C型碳化物,裂纹萌生形核点最少,裂纹扩展速率最慢,材料的抗拉强度降低到675 MPa,韧性增加到156 J,疲劳寿命增加到2205周次,疲劳性能最好。
其他文献
为进一步严格党内政治生活,锻造过硬"领头雁"队伍和党员队伍,增强农村基层党组织凝聚力和战斗力,石家庄市裕华区在全区23个村级党组织中开展政治生活质量提升专项行动。举办
甲烷干重整技术(DRM)可以将甲烷与二氧化碳这两种温室气体催化转化为氢气与一氧化碳,在缓解环境压力的同时并获得F-T合成原料气。在甲烷干重整反应过程中,镍基催化剂中Ni纳米颗粒的积碳与烧结是造成催化剂失活的主要原因。因此,提升镍铝催化剂活性、抗积碳性能是研究焦点。本文通过蒸发自组装法构建了稳定的Ni/CeO_2-Al_2O_3催化剂,并探究了金属与助剂和金属与载体界面结构对镍铝催化剂在甲烷干重整反
开发高附加值的下游化学品是煤炭清洁高效利用的重要研究方向。乙醇酸甲酯(MG)是一种用途广泛的精细化学品,主要作为化工中间体和高品质溶剂。草酸二甲酯(DMO)通过选择性加氢反应合成MG具有高原子利用率(64%)、高附加值和生产工艺绿色环保的优势,是一条非常有发展前途的新型煤化工产品工艺路线。DMO选择性加氢反应的关键在于通过设计高效稳定的铜基催化剂控制加氢程度,进而获得理想的目标产品。目前,针对铜催
多孔材料发展至今,经历了由无机多孔材料(沸石、活性炭、硅藻土等)到有机多孔材料(多孔有机笼、多孔有机聚合物等)的一系列演变。相比之下,多孔有机聚合物结合了高比表面积、
钨及钨合金材料由于熔点高、硬度大、导热率高、高温强度好及抗中子辐照能力强等优点,被广泛应用于武器装备、核聚变开发、航空航天及微电子信息等尖端技术领域。随着科技的快速发展,钨材料的应用领域日益扩展,同时对钨的性能提出更加苛刻的要求。钨的失效大都是从表面开始的,表面磨损和腐蚀是钨最为普遍的失效形式。因而表面改性技术是一种提高钨及其合金表面抗损伤能力和延长其使用寿命的有效途径。本课题拟利用双层辉光等离子
随着人类对新兴清洁能源的迫切需求,铝电池受到全球研究人员的青睐。但是,室温有机离子液体铝电池存在的一些关键性问题制约了其进一步发展。正极材料的选取对[AlCl4]-(或Al3
学位
酚醛纤维(PF)是一种有机纤维,其具有良好的阻燃隔热、低烟低毒、耐烧蚀等优势,广泛应用在纺织防护、过滤吸附、航空航天等领域,市场前景广阔。目前,酚醛纤维的制备方法主要有静电纺丝法和湿法纺丝法,但因制备工艺条件苛刻、技术难度高,导致我国酚醛纤维市场巨大的需求只能依靠进口。本文根据热塑性酚醛树脂原料的特性分析,有针对性地改造熔喷设备,探索出熔喷纺丝法制备酚醛纤维的新方法,并优化制备技术,以得到最佳的酚
生物质气化技术可将固态生物质转化为气态产物。但产气中焦油的存在,是生物质气化技术工业化运行面临的主要挑战之一。真实生物质气化焦油成分复杂,主要包括单/多环芳烃及含氧类物质。由于甲苯代表了稳定的芳香族结构,在高温焦油中含量较高,因此本文选用甲苯作为生物质气化焦油模型化合物。近年来,镍基半焦(Ni/BC)催化剂由于价格低廉、易制备、催化活性好、失活后可直接燃烧或气化利用等优点,而被广泛应用于焦油水蒸气
气液两相流广泛存在于石油、化工、动力、冶金等诸多工业领域,其流量的在线不分离测量具有重要的科学和工程意义。由于气液两相流固有的复杂性,两相流参数检测的难度很大,其