论文部分内容阅读
太阳能电池发展至今,硅基太阳能电池和薄膜太阳能电池已实现商品化,但材料和器件制备成本大限制了其发展。聚合物太阳能电池具有原料丰富,成本较低、可以制备成柔性器件等显著优点,近年来备受瞩目。影响聚合物太阳能电池商业化的主要因素是器件效率较低,改善器件效率可以从两方面入手:器件结构的改善和活性层材料的选择。碳微纳米球作为富勒烯类的一种碳材料制作工艺简单、成本低,具有优异的物化性能,有望成为一种潜在的聚合物太阳能电池受体材料,课题组已将其作为受体材料用于聚合物太阳能电池中进行了初步的探索,但器件效率偏低,为了改善效率,本课题将金属材料与碳微纳米球进行复合,制备出金属碳球复合材料,以改善器件性能。本文首先以硝酸银和葡萄糖为原料,采用一步水热法制备了碳银复合材料,考察了硝酸银浓度、反应时间、葡萄糖浓度对产物结构和形貌的影响,然后,选取了两种典型的复合材料通过研究其电化学性能分析了材料作为P3HT基聚合物太阳能电池受体材料的可行性,接着制备了P3HT/碳银复合材料复合膜,考察了旋涂速度和给受体共混质量比对复合膜光学性能的影响,最后选用最优参数下制备的薄膜作为聚合物太阳能电池的光敏活性层,探索其光伏性能。结果如下:1.采用一步水热法,190℃的反应温度下,得到三明治结构的球形复合材料(Ag-C-Ag);200℃的反应温度下,制得核壳结构的碳银复合材料(Ag@C);循环伏安曲线显示:三明治结构复合材料的HOMO能级为-5.55eV,LUMO能级为-4.4eV;核壳结构复合材料的HOMO能级为-5.69eV,LUMO能级为-4.68eV,可以作为P3HT基太阳能电池受体材料。2.旋涂转速为1000rpm,当P3HT和受体材料Ag-C-Ag的混合比(P3HT:Ag-C-Ag)为2:1和1:1时,荧光猝灭现象更为明显;当共混质量比为1:1时,转速为1500rpm时,猝灭现象最明显,当共混质量比为2:1时,转速为1000rpm时,猝灭现象最明显,表明激子分离率高,有利于电荷的有效传输。1000rpm的旋涂转速下当混合比为2:1时,吸收峰增强更加明显。3. P3HT与Ag@C以2:1共混,转速为1000rpm时,旋涂制备的复合膜在可见光区光谱吸收与太阳光谱匹配性强,荧光猝灭现象明显,激子分离率高;4.相比于纯碳球做受体材料,P3HT/Ag-C-Ag基的器件效率提高了414%,P3HT/Ag@C基的器件效率提高了386%;