【摘 要】
:
随着化石燃料的枯竭,人们对日益严重的环境问题愈加关注。在众多新型能能源存储与转化系统中,锌-空气电池(ZABs)具有能量密度高和绿色环保等优点,受到了广泛关注。其工作核心基于氧还原反应(ORR),这一反应具有动力学迟缓问题。为了提高电池的性能,需要加入催化剂来提高ORR反应速率。尽管铂基电催化剂具有出色的ORR催化活性,但由于其成本过高,而稳定性较差,极大的增加了电池的成本,阻碍了ZABs的商业化
论文部分内容阅读
随着化石燃料的枯竭,人们对日益严重的环境问题愈加关注。在众多新型能能源存储与转化系统中,锌-空气电池(ZABs)具有能量密度高和绿色环保等优点,受到了广泛关注。其工作核心基于氧还原反应(ORR),这一反应具有动力学迟缓问题。为了提高电池的性能,需要加入催化剂来提高ORR反应速率。尽管铂基电催化剂具有出色的ORR催化活性,但由于其成本过高,而稳定性较差,极大的增加了电池的成本,阻碍了ZABs的商业化进程。因此,为了解决这一关键问题,迫切需要开发廉价、高效的非贵金属基ORR催化剂用于替代铂基催化剂。非贵金属基ORR催化剂种类繁多,其中,包覆过渡金属磷化物的氮磷共掺杂碳材料具有充足的发展潜力。这是由于氮磷共掺杂的碳骨架具有很多的表面缺陷,可以成为良好的ORR催化活性位点,内部包覆的过渡金属磷化物本身具有良好的导电性,有利于反应过程中的电子转移,进一步提高ORR反应动力学。而且,过渡金属磷化物与氮磷共掺杂碳骨架之间具有很强的相互作用,有利于电催化反应过程中保持催化剂的结构稳定。本论文基于以上论述,进行如下的具体研究内容:1、通过静电相互作用,使三聚氰胺、植酸和氧化石墨烯自组装形成前驱体化合物,利用其中的含磷官能团与金属离子的强相互作用,将Fe3+直接引入前驱体中。前驱体经高温热解处理后,原位生成包覆磷化铁纳米颗粒的氮磷共掺杂碳纳米片材料(2D-FeP@FeNC-900)。磷化铁纳米颗粒和氮磷共掺杂的碳纳米片框架之间存在协同效应,提高了ORR本征活性。以2D-FeP@FeNC-900为催化剂的液态可充电ZABs具有260 mW cm-2的超高峰值功率密度。2、以氧化石墨烯为基底,通过过硫酸铵(APS)引发2,6-二氨基吡啶和植酸的聚合反应,在氧化石墨烯上原位生成聚合物前驱体,利用其中的含磷官能团与金属离子的强相互作用,将Fe3+直接引入前驱体中。前驱体经高温热解、酸洗处理后,生成含有铁单原子(Fe-NX)包覆的磷化铁纳米颗粒的氮磷共掺杂碳材料。含有Fe-Nx的氮磷共掺杂碳骨架与磷化铁纳米颗粒具有更优的协同效应,应这种材料具有更高的ORR催化活性。
其他文献
油浸式变压器作为电力网络能量转换与传输的枢纽设备,其运行的安全可靠性直接关系到电力系统的稳定运行,随着电网规模及电压等级的提升,对变电设备的可靠性也提出了更高的要求。由于状态监测设备的不断丰富,监测数据在经过采集、传输、存储过程后逐渐呈现出大体量、高维度、多噪声的特点。因此,本文依托状态指标在线监测数据,提出对应的数据处理与状态评价策略,并基于该体系研发一套系统平台以验证方案的可行性。在数据处理方
随着传统一次能源的逐渐枯竭和大气污染的日益严重,光伏发电和风能发电迅速发展,清洁能源的发展与利用为人们带来了巨大的经济效益和环境效益,相对于化石燃料,清洁能源无噪声,无污染排放,更无枯竭危险。然而,清洁能源尤其是太阳能,风能等资源受环境条件的制约,位置较为分散,多以独立分布的小型发电装置开展利用,即分布式电源(Distributed generation,DG)。分布式电源作为消纳风能、太阳能、生
在全球化石能源不断减少与伴随的环境污染问题日益严重的今天,分布式发电并且以清洁能源为主的发电方式得以快速发展。但是如果接入的分布式电源较多将会对电网的运行稳定与安全可靠造成影响。所以为了更好地将分布式电源与电网之间的不利因素解决,作为不仅可以提升能源利用率并且还可以消纳可再生能源的微电网,目前聚焦了学术界比较多的目光。首先,从改善微电网的稳定性与经济性出发,围绕风光不确定性的微电网经济优化调度展开
雷电冲击下变压器绕组的波过程计算对绝缘结构的设计有着重要意义。在一些特殊场合,为了达到更经济的调压效果,通常把变压器设计成带串联调压的变压器组,电解铝用整流变压器及电弧炉变压器是这类变压器的典型应用。对于这种多器身串联变压器组进行波过程分析时,为了简化计算过程,通常在忽略其它变压器器身的作用下采用单器身等值电路进行分析,这对于波过程计算会存在一定的误差与局限性,对绝缘要求会过于严酷、苛刻。本文通过
在过去的十年里,有机太阳能电池的光电转化效率被持续刷新,但是一些高光电转化率材料的稳定性及高昂的成本阻碍了有机太阳能电池实现商业化的进程。苝酰亚胺(Perylenediimides,PDI)类化合物是研究最早的一类有机半导体材料之一,具有光热稳定性好、可见光吸收强等优点,但是这类材料也一直受聚集效应以及吸收范围窄的困扰。本研究从苝酰亚胺的空间构型的调控以及吸收光谱的调节出发,设计合成了一系列的扭曲
在风电占比较高的能源系统中,由于风电的波动性,风电功率预测和电力储能手段显得更加重要。电转气技术是一种有前景的解决电力长期存储问题的手段。随着电转气技术的发展,电力系统和天然气系统可以耦合成为电-气综合能源系统协同运行,提高风电利用率。本文首先介绍了风电功率的影响因素、预测方法和风电功率预测的评价指标。然后,引入萤火虫行为和莱维飞行对教与学优化算法进行改进并通过标准函数测试证明了改进方法的优越性。
巢脾(Honeycomb)是蜂巢的组成部分,是蜜蜂栖息、繁殖和酿造储存食物的场所。蜂胶在维持巢脾环境清洁和蜜蜂健康方面发挥重要作用,中蜂(Apis cerana)不生产蜂胶,其抑制微生物的繁殖,保持环境清洁,维持卵和幼虫的健康成长的机制还未见文献报道。我们推测,与意蜂巢脾(A.mellifera hongycomb,AMC)相比中蜂巢脾(A ceranae honeycomb,ACC)中的特有或含
锦纶织物在传统染色工艺中存在湿处理牢度差、染色工艺流程长、能耗大等问题;文中采用节水酸性固色剂TF-506HA对锦纶织物进行短流程染色、固色处理,探讨了固色剂用量、固色温度及固色时间对织物固色效果的影响,及节水酸性固色剂TF-506HA对不同染料的适用性,并与传统固色工艺进行对比。结果表明,节水酸性固色剂TF-506HA短流程工艺中最佳固色条件为:节水酸性固色剂TF-506HA用量6.0%,温度8
活性层是有机太阳能电池的一个重要组成部分,而活性层主要是由受体和给体混合而成。目前效率较好的搭配是宽带隙聚合物给体和窄带隙受体小分子,最高效率已经突破18%,其主要原因(a)宽带隙聚合物给体能获得较低的最高占有轨道能级(HOMO),有效地获得较高的开路电压(Voc);(b)给体和受体的吸收产生较好的互补,从而吸收更多的光子,获得高的短路电流密度(Jsc)。本文主要研究内容为基于二维氯代烷氧基苯共轭
随着环境问题日益突出,找到合适的清洁能源是首要任务,锂电池与氢能源是当今社会使用最广泛的两种清洁能源,如何提高锂电池的性能与实现高效催化制氢是当前研究的热点。本文以二维二硫化铼的大面积生长和应用为切入点,使用化学气相沉积法(CVD),利用金属薄膜的催化作用,首次在不同衬底下实现了大面积二维二硫化铼晶体的垂直生长,并将Pt/ReS2应用于电催化析氢,而且使用CVD的方法在碳纳米管表面生长二硫化铼,将