用于薄膜晶体管的溶液加工氧化物栅介质层的研究

来源 :华南理工大学 | 被引量 : 0次 | 上传用户:jizhejida
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
氧化物薄膜晶体管(TFT)由于其超低关断电流、较高场效应迁移率、均匀性好等优势而在大面积、透明、柔性及节能显示领域备受关注。目前,产业化的TFT均为真空法制备的,其设备昂贵、工序复杂、材料利用率低。相比于真空法,溶液法具有成本低、材料利用率高、易于灵活控制掺杂比例等优势而受到广泛关注。采用溶液法制备HfO2、Al2O3和ZrO2等高k栅介质,可降低TFT器件工作电压,并提高器件工作的可靠性。近年来,已经有许多关于高场效应迁移率(甚至大于100 cm~2V-1s-1)的溶液加工氧化物TFT的报道。但是,溶液加工的氧化物栅介质的电容不确定性会导致器件的不稳定和迁移率的严重高估。因此本文针对不同的栅介质材料和制备过程等方法展开实验,对溶液加工栅介质的薄膜特性及器件电学性能进行了深入探究。(1)溶液加工Al2O3栅介质的研究。旋涂Al2O3前驱体溶液并在不同温度下和不同湿度下退火制备栅介质薄膜。溅射In ScOx(In2O3:Sc2O3=98:2,wt%)半导体作为有源层。发现在低温度和高湿度退火的Al2O3栅介质展现出较强的双电层极化,低频电容密度(Ci)较大,随着频率增高Ci迅速降低。为进一步探究氢离子对器件的影响,在旋涂前驱体前对栅极表面进行水处理。基于无水处理的和水处理的Al2O3的氧化物TFT的迟滞电压分别为0.16 V和-0.24 V,水处理的Al2O3栅介质表现出更强的双电层极化。采用TOF-SIMS验证薄膜中氢元素的存在,经水处理的Al2O3栅介质中氢含量从Al2O3表面到Al2O3/ITO界面逐渐减小。(2)溶液加工HfO2栅介质的研究。旋涂HfO2前驱体溶液并在不同温度下退火制备栅介质薄膜。随着退火温度的升高,HfO2栅介质Ci在低频时先增大后降低。转移特性曲线中呈现逆时针迟滞,迟滞电压小于0 V且数值随温度升高降低。在低温退火时HfO2栅介质薄膜中含有一定的氢离子或羟基基团,展现出一定的双电层极化。(3)溶液加工ZrO2栅介质的研究。旋涂ZrO2前驱体溶液并在不同温度下退火制备栅介质薄膜。栅介质Ci随着退火温度的升高而增大,Ci基本不随f、V变化,未表现出明显的双电层极化。ZrO2薄膜中的双电层极化效果与Al2O3、HfO2薄膜相比更弱。基于Al2O3栅介质层的氧化物TFT易受制备工艺和制备环境的影响,制备过程中氢含量的改变会影响器件性能;而基于ZrO2的氧化物TFT的性能受工艺环境影响小;基于HfO2的氧化物TFT的性能受工艺环境影响介于两者之间。结合三种高k栅介质薄膜的介电常数、禁带宽度和极化方式等特性,进而为前驱体溶液的配比、成分及制备方式提供参考。
其他文献
高熵碳化物陶瓷作为一类新型超高温陶瓷材料,不仅兼具传统碳化物极高的熔点、较高的硬度、强度和耐磨性以及良好的高温物理化学稳定性等性能,而且在多主元的高熵化作用下,该材料的硬度、模量以及高温物理化学稳定性等性能都得到了极大的提升,使其成为应用于航空航天、国防军工等极端领域的有力备选材料之一。然而,目前国际上所开发的高熵碳化物陶瓷材料普遍存在晶粒粗大、致密度低、元素分布不均匀、氧杂质含量高等系列问题,严
在行星齿轮传动系统设计中,振动与噪声是最重要的设计指标之一。齿轮修形技术被制造商广泛地应用,以补偿轮齿在不同载荷工况下的弹性变形,从而减小齿轮啮合激励波动,进而减小行星齿轮系统的振动和噪声。由于齿轮侧隙的存在,行星齿轮系统在其固有频率附近工作时,可能会出现部分或全部轮齿脱离啮合现象,表现出软化的非线性动力学特性。行星齿轮工作时各齿轮啮合副之间都存在啮合相位差,导致各啮合副各谐次啮合力在构成合力和合
小麦醇溶蛋白具有无毒、可降解、生物相容性好等优点,其特殊的氨基酸组成和结构赋予它独特的两亲性,能够在反溶剂过程成自组装成纳米颗粒。本论文以小麦醇溶蛋白为材料,将其作为根皮素的输送载体和纳米银原位合成过程中的稳定剂。通过小麦醇溶蛋白与根皮素以及纳米银之间的共组装作用,提高了根皮素和纳米银的稳定性,制备了抗氧化和抗菌复合胶体颗粒。然后以该抗氧化和抗菌小麦醇溶蛋白颗粒作为稳定剂,构建了界面抗氧化和抗菌P
锅炉设备具有较大的空间范围,其炉膛内的燃烧过程是一个复杂的物理和化学过程,并且锅炉运行状态会因电网调度、燃煤种类改变以及长时间运行等因素的影响偏离锅炉设计工况。对炉膛物理场进行在线可视化可以在锅炉运行过程中为运行人员提供更加详细的锅炉炉膛信息,对锅炉优化燃烧调整及锅炉安全经济运行具有重要意义。以声学法和光学法为代表的燃烧三维可视化技术是炉膛燃烧可视化领域被广泛应用的方法,而两者都难以对气体浓度场做
金属卤化物钙钛矿是近年来兴起的新型光电材料,由于其具有荧光量子产率高、发光光谱窄、带隙可调谐、原材料成本低和可溶液加工等众多优点,在发光应用领域的研究备受关注。但钙钛矿的离子型结构使其易受到环境中水、氧气等因素的影响而发生衰变分解,严重影响其光电性能及商业化应用前景。本论文致力于用具有良好透光性、耐热性和可塑性的聚碳酸酯(PC)与钙钛矿发光材料复合,通过原位法直接在PC薄膜中生长钙钛矿晶体,以及通
塑料管材作为一种常用管材,相比于传统同金属管材具有自重轻、可回收、寿命长等优点,其中大口径塑料管材被广泛应用于排水工程、排污工程、救援逃生等领域。超高分子量聚乙烯(UHMWPE)作为近年来得到广泛应用的高性能塑料,数百万的分子量使其分子链缠结严重,导致熔体流动性极差,传统方法难以加工成型UHMWPE制品,从而限制了UHMWPE的应用范围。目前大口径塑料管材的成型方法主要有挤出成型和缠绕成型,挤出成
有机共轭分子在太阳电池、发光二极管、场效应晶体管和荧光探针等方面具有重要的应用,相关研究逐渐加深并取得了巨大的成功。有机共轭分子在固态条件下,分子与分子之间往往形成不同的堆积方式,也就是不同的聚集行为,对材料的光电性能有着巨大的影响。由于有机共轭分子在许多应用场景中均是在固态薄膜条件下使用,因此了解分子与分子之间的聚集行为以及这些聚集行为如何影响微观和宏观性质,如吸收、固态荧光、激子扩散、空穴和电
随着人类工业化进程的不断发展,对于金属和石油等各种资源的开采使用需求不断增大,从而带来的有机和金属污染也日益严重,金属微量元素污染物质是主要污染物的前三位,也是水体污染的主要物质之一,因此,寻求经济高效、绿色环保的处理重金属离子污染的方法具有非常重大的意义。壳聚糖是一种天然碱性阳离子多糖,分子链上具有大量的羟基和氨基,对于重金属离子具有良好的吸附效果,并且原材料来源广泛,廉价易得,绿色可降解。但是
随着工业技术不断的发展,人们对于新材料的探究越来越广泛深入,不断寻找具有各类优良性质的材料。六方氮化硼(hexagonal boron nitride h-BN)由于其特殊的结构和优良的性能近年来受到极大的关注,有将纯h-BN直接作为原材料来制备光学或电子器件,更多则是将其改性之后制备复合材料来提高材料的各项性能,如导热性能。导热高分子复合材料由于其良好的可加工性在电子封装行业应用广泛,但是高分子
通过数字化、信息化手段实现对交通区域内的目标感知以及事件识别,有助于保障交通安全、缓解交通拥堵、减少交通事故,提高公路运行效益和交通管理水平。公路监控系统的视频影像作为一种容易快速获取且廉价的数据采集手段,成为现代智能交通系统的重要数据源之一。因此,开展基于视频图像的公路环境目标感知与交通事件智能识别研究已成为智能交通领域的关键科学问题之一。实现交通目标感知,首先是对交通环境中的各类目标进行准确检