论文部分内容阅读
随着生活水平的不断提升,居民对医疗保健的要求越来越高,这导致医院、检验中心等机构的生化检测数量急剧上升。生化分析仪作为检测肝功能、肾功能以及血糖、血脂水平等最常用的设备之一,市场需求量大。但目前国内生化分析仪市场中进口产品占据主要份额,研制更加先进易用的国产全自动生化分析仪迫在眉睫。
自动加样系统是生化分析仪最主要的功能模块之一,主要负责待测样本和反应试剂的自动加样、反应废液的处理以及比色杯与试剂针的清洗等,加样系统性能的高低将直接决定生化分析仪的整体性能。基于上述背景,本文研制了一套生化分析仪自动加样系统,该系统具备样本、试剂自动加样、标准96孔板自动清洗、反应废液自动处理以及加样数据自动存储与读取等功能,并重点研究了影响加样精度的关键因素。主要工作包括以下三个部分:(1)设计加样系统,系统分为下位机、上位机两个部分。下位机设计主要分为以下三个方面:一是传动模块与系统液路设计;二是硬件控制电路设计,包括电源模块、96孔板与试剂针定位控制模块、泵的启停与电磁阀通断控制模块等设计;三是下位机控制软件的编写,包括串口通信、泵、阀等加样元件的控制以及加样时序的控制等。上位机人机交互界面功能主要包括样本和试剂加样量的设置、96孔板清洗次数设置和加样数据后台存储与访问等功能。
(2)对影响加样精度的因素进行仿真研究与分析。首先,选定加速度变化平稳、更符合步进电机矩频特性的S形曲线驱动柱塞泵步进电机的运行,引进Logistic函数对传统的柱塞泵驱动曲线进行优化,提出三条优化后的S形步进电机驱动曲线,并利用Fluent软件对优化后的S形曲线驱动性能进行仿真分析,仿真结果表明,r值(决定Logistic函数形状的参数)为0.6时,曲线加样性能表现最好。其次,因为加样包含血清等粘性较大和清洗液等粘性较小的液体,针对液体粘性的影响,选用乙醇、水和甘油三类粘性不同的液体为研究对象,利用Fluent软件对液体在加样针内部的流动状态进行仿真,结果表明,流速相同时,粘度大、雷诺数小的液体不容易从针内流出,且加样完成后会残留于针内部与针口处,影响加样精度。最后,利用仿真的方法研究了液体流速对加样精度的影响,仿真结果表明,若液体粘度较小,提高流速可以抑制卫星液滴的产生,提高加样精度;若液体粘度较大,提高流速则会使加样完成后针内的液体残留量增加,降低加样精度。
(3)对影响加样精度的因素进行实验研究与分析,包括加样管路填充系统液实验、柱塞泵反向间隙测定实验、加样管路材料硬度实验、隔离空气柱体积实验、三条S形加减速曲线加样实验以及柱塞泵最大运行速度实验,并根据实验结果优化加样方案。实验结果表明,加样管路填充系统液、选用硬管作为加样管路、采用r值为0.6的驱动曲线以及针对不同加样液体选用合适的柱塞泵最大运行速度都可以提升加样精度。
自动加样系统是生化分析仪最主要的功能模块之一,主要负责待测样本和反应试剂的自动加样、反应废液的处理以及比色杯与试剂针的清洗等,加样系统性能的高低将直接决定生化分析仪的整体性能。基于上述背景,本文研制了一套生化分析仪自动加样系统,该系统具备样本、试剂自动加样、标准96孔板自动清洗、反应废液自动处理以及加样数据自动存储与读取等功能,并重点研究了影响加样精度的关键因素。主要工作包括以下三个部分:(1)设计加样系统,系统分为下位机、上位机两个部分。下位机设计主要分为以下三个方面:一是传动模块与系统液路设计;二是硬件控制电路设计,包括电源模块、96孔板与试剂针定位控制模块、泵的启停与电磁阀通断控制模块等设计;三是下位机控制软件的编写,包括串口通信、泵、阀等加样元件的控制以及加样时序的控制等。上位机人机交互界面功能主要包括样本和试剂加样量的设置、96孔板清洗次数设置和加样数据后台存储与访问等功能。
(2)对影响加样精度的因素进行仿真研究与分析。首先,选定加速度变化平稳、更符合步进电机矩频特性的S形曲线驱动柱塞泵步进电机的运行,引进Logistic函数对传统的柱塞泵驱动曲线进行优化,提出三条优化后的S形步进电机驱动曲线,并利用Fluent软件对优化后的S形曲线驱动性能进行仿真分析,仿真结果表明,r值(决定Logistic函数形状的参数)为0.6时,曲线加样性能表现最好。其次,因为加样包含血清等粘性较大和清洗液等粘性较小的液体,针对液体粘性的影响,选用乙醇、水和甘油三类粘性不同的液体为研究对象,利用Fluent软件对液体在加样针内部的流动状态进行仿真,结果表明,流速相同时,粘度大、雷诺数小的液体不容易从针内流出,且加样完成后会残留于针内部与针口处,影响加样精度。最后,利用仿真的方法研究了液体流速对加样精度的影响,仿真结果表明,若液体粘度较小,提高流速可以抑制卫星液滴的产生,提高加样精度;若液体粘度较大,提高流速则会使加样完成后针内的液体残留量增加,降低加样精度。
(3)对影响加样精度的因素进行实验研究与分析,包括加样管路填充系统液实验、柱塞泵反向间隙测定实验、加样管路材料硬度实验、隔离空气柱体积实验、三条S形加减速曲线加样实验以及柱塞泵最大运行速度实验,并根据实验结果优化加样方案。实验结果表明,加样管路填充系统液、选用硬管作为加样管路、采用r值为0.6的驱动曲线以及针对不同加样液体选用合适的柱塞泵最大运行速度都可以提升加样精度。