论文部分内容阅读
本文主要研究环流形上的极值度量的存在性和K-稳定性.本文将Donaldson关于环流形上有关常数量曲率度量的稳定性概念的约化推广到一般的极值度量的情形.通过这个约化,本文证明环流形上极值度量的存在性可以推出流形对于环形变的相对K-稳定性.在不知道是否存在极值度量的情形下,本文还给出环流形相对K-稳定的一个充分性条件.对环曲面的情形,基于Arrezo-Pacard-Singer的工作,本文证明任意一个环曲面上存在含有极值度量的Ka¨hler类,并给出一些环曲面上有不存在极值度量的K¨ahler类的例子