【摘 要】
:
金属锂因其高比容量和低电化学电位被认为是下一代最具潜力的锂电池负极材料之一。然而,无宿主的二维锂片负极在充放电过程中产生的体积膨胀,以及锂枝晶的生长是影响电池性能和安全的关键问题。碳基三维结构因其轻质、电化学性能稳定、导电性好以及比表面积高的特点而成为解决上述问题的重点结构材料。典型的代表为碳纳米管(CNT)和石墨烯基三维结构,然而,其严重的团聚和堆叠问题限制了其优势的发挥。因此,本文将具有优异分
论文部分内容阅读
金属锂因其高比容量和低电化学电位被认为是下一代最具潜力的锂电池负极材料之一。然而,无宿主的二维锂片负极在充放电过程中产生的体积膨胀,以及锂枝晶的生长是影响电池性能和安全的关键问题。碳基三维结构因其轻质、电化学性能稳定、导电性好以及比表面积高的特点而成为解决上述问题的重点结构材料。典型的代表为碳纳米管(CNT)和石墨烯基三维结构,然而,其严重的团聚和堆叠问题限制了其优势的发挥。因此,本文将具有优异分散性的螺旋碳纳米线圈(CNC)插入到CNT团簇中形成CNC@CNT三维结构,从而解决CNT的团聚问题,并使其充分发挥高比表面积的优势。同时,CNC的插入能保证结构的高孔隙性,为锂离子提供快速传输路径和充足的沉积空间,改善锂的沉积行为,抑制锂枝晶的形成。另外,CNC的超弹性特性能够缓解电极在多次循环后的体积膨胀。具体内容如下:本研究将CNT和CNC均匀混合,然后通过简单的真空抽滤工艺制得了具有多孔结构的CNC@CNT膜。CNC的引入使得CNT比表面积由154.8 m~2 g-1增加至258 m~2 g-1,显著提升了电极的比表面积。同时CNC的螺旋中心孔洞的存在使得三维结构具有65%的高孔隙率,使得锂离子在CNC@CNT电极中有更快的离子扩散行为,并提供了丰富的沉积空间。该电极在0.5 m A cm-2的电流密度下实现了平坦、均匀的锂沉积,没有枝晶的形成。并且超弹性体的CNC使整个电极结构能够释放循环过程中的部分应力,在50圈沉积/剥离的过程后体积膨胀率仅为10.7%,保证了电极结构的稳定性。该电极在半电池中展现良好的亲锂性,在0.5 mA cm-2时呈现出11.8 mV的低过电位,经过近200次的长时间循环后平均库仑效率为97.3%。以CNC@CNT电极制得的全电池在0.5C的倍率下具有142.12 m Ah g-1的比容量,锂离子在电极结构中的良好动力学行为使其在不同的高倍率下发挥了优于CNT和铜箔电极的良好电化学性能,展现较小的电池极化;在1C的测试倍率下,该电极经过100次的长时间循环测试后仍能具有96.8%的高容量保持率,具有良好的稳定性。这为碳基三维锂金属宿主的改进提供了一个很好的思路。
其他文献
C型凝集素是昆虫先天免疫防御系统中识别病原微生物的模式识别受体之一,具有参与细菌的识别与清除、调节血液封装和黑化等多方面的功能。随着柞蚕产业发展的同时,目前,出现一系列病原微生物入侵引起的健康问题,严重影响了柞蚕的产量,挖掘柞蚕体内响应病原微生物胁迫的关键因子,可为柞蚕的免疫防御机制研究提供可靠的数据支撑。本研究首先从柞蚕转录组数据库中筛选得到一种免疫相关因子——C型凝集素,将其命名为ApCTL4
基因疗法是通过基因转移技术将外源基因导入受体细胞以治疗由基因缺陷引起的疾病。自从1968年美国科学家迈克尔·布莱泽发表《改变基因缺损:医疗美好前景》,提出基因治疗的概念以来,基因治疗飞速发展。基因治疗的成功离不开递送载体的帮助,以帮助治疗基因克服递送过程中的各种障碍。现在常用的载体中,病毒载体拥有无法比拟的高转染能力,但是,有限的核酸携带能力、特异性的缺乏以及不可避免的安全性等问题是病毒载体难以解
卵巢癌是高死亡率的妇科恶性肿瘤之一,对女性的生命健康产生巨大威胁。目前,卡铂(CBP)和紫杉醇(PTX)用于卵巢癌临床一线化疗。针对CBP/PTX疗法的毒副作用及肿瘤铂耐药的问题,本论文围绕芹菜素(API)与CBP/PTX的联合用药对上皮性卵巢癌细胞Caov-3的协同抗肿瘤作用,以及API逆转上皮性卵巢癌细胞Hey A8对CBP耐药作用开展研究。研究结果和结论如下:(1)采用MTT方法确定联合用药
条形柄锈菌是危害最为严重的植物病原真菌之一,可引起对小麦生产具有毁灭性危害的小麦条锈病,目前还没有针对条形柄锈菌的高效绿色抗菌剂。条形柄锈菌几丁质脱乙酰基酶Pst_13661是其逃避植物免疫的一个关键致病因子,其活性缺失使条形柄锈菌生长发育受到抑制,致病性大幅降低。人和植物中不存在Pst_13661的同源蛋白,因此利用小分子化合物抑制Pst_13661的活性可能是防治条形柄锈菌的绿色有效策略。本文
微生物感染疾病是医疗领域的重大难题,分子靶标通常是蛋白质、酶、受体、核酸等生物分子,与微生物和疾病密切相关。对于微生物感染而言分子靶标通常作为药物作用的靶点,近年来共价探针以及共价抑制剂类的药物研发逐渐成为研究热点。本研究将抗微生物感染应用最为广泛的各类微生物体内的半胱氨酸分子靶标以及其共价抑制剂在医疗领域的使用作为切入点,通过大数据挖掘和构建在线知识库、知识图谱的方法,探究了共价抑制剂在抗微生物
生物能源作为可持续能源比其他可再生能源(如风能和太阳能)受到更多关注,我国颁布的《“十四五”生物质能源发展规划》指出将新能源产业的重心放在生物质能产业上,并充分开发和利用生物质能提高生物质能源综合利用程度。生物丁醇作为新兴的生物质能源为缓解化石能源不足和保护环境绿色发展问题的新思路。据统计过去几十年来,生物能源的需求增加了四倍。同时,专家预测到2060年时,生物能源将占全球能源的17%以上。然而,
当前,生物技术不断从医药、农业、食品向工业领域转移。使用生物质等绿色资源生产液体燃料和化学品,实现化工产品生产原料向可再生原料转移,对实现我国化工产业可持续发展具有重要意义。利用微生物资源将生物柴油生产过程中的副产物粗甘油转化为1,3-丙二醇(1,3-PDO)的生物合成技术符合时代发展的需求。在工业化生产中,采用高浓度底物进行连续发酵可以显著提高底物转化率、产物浓度以及生产强度,但较高的底物浓度与
相较于前两代半导体材料,碳化硅(Si C)材料禁带宽度大、击穿电场强度高、导热性好,有着应用于恶劣环境下辐射探测领域的独特优势;而作为一种高能射线,X射线有着广泛的应用,涵盖医学、工业和分析学。此外,宇宙中的X射线蕴含着天文的大量信息,核反应中的X射线可以反映核反应的程度和阶段。为此本文对Si C基PIN型X射线探测器开展了研究工作。通过对高阻4H-Si C单晶进行双面离子注入,研发出p-(300
SiC作为一种宽带隙半导体材料,因其具有大的禁带宽度、高的饱和电子漂移速度、大的临界位移阈能和击穿电场强度等性能,在耐高温抗辐照中子探测器研制方面具有显著优势。目前大多数半导体中子探测器需要外置含硼或含锂同位素的中子转换层,同时碳化硅p型掺杂通常选用硼或者铝作为受主。为此本文面向热中子探测,探索研制一种内嵌式的基于硼掺杂的碳化硅器件。碳化硅主要的后掺杂方法有离子注入和热扩散。相比于离子注入,热扩散
几丁质是一种多糖类物质,在自然界中含量仅次于纤维素。其水解产物和衍生物可用于许多领域。自然界中几丁质多以结晶态形式存在,难于降解。常用的化学方法降解容易带来污染,酶法降解是环境友好的重要手段。认识并发掘对几丁质,尤其是结晶态几丁质具有高活性的几丁质降解酶,是几丁质资源利用需要解决的关键问题。几丁质是昆虫的重要组成成分,昆虫体内存在着完整的几丁质降解酶系统,以完成正常生长发育所需的几丁质的周期性更新