论文部分内容阅读
本文首先从发生重气扩散的原因入手(具体选用了高含硫天然气井喷事故),然后研究重气的扩散过程模型,其次对重气扩散的后果进行了风险分析,最后针对重气扩散事故——高含硫天然气井喷事故,做了应急响应方面的研究。(1)山区高含硫天然气井喷失控事故分析首先,详细介绍了钻井工程和井下作业的具体工艺过程,为后续的井喷失控事故致因分析提供了基础条件。同时,对井控技术进行了深入研究,井控,本质都是指采取一定的方法控制住地层孔隙压力,基本上保持井内压力平衡,保证钻井的顺利进行的技术。根据井涌的规模和所采取控制方法的不同,把井控作业分为一级井控(即初级井控)、二级井控和三级井控。当二级井控失败,井涌现象没有得到控制,地层流体无控制地涌入井筒,喷出地面,则会成为井喷。有资料显示川东1993年以后发生的井喷事故远远少于1993年之前的,为了从时间上有比较,所以选取1996-2005年10年间的井喷案例研究井喷的显示特征,发现随着技术进步,在各类作业中,钻井井喷所占比例已降低;起下钻井喷事故比例有所上升;和人们的普遍认识不同,也通过统计资料可以看到,浅层气和高压深井的发生井喷的比例不相上下,所以,对浅层气钻井的安全井控意识需要加强;井喷前的征兆显示溢流、井涌、井漏、油气侵显示都非常明显;操作失误、设备因素、钻井液因素在井喷失控的直接原因中占比例较高;规章制度因素、井控意识因素在井喷失控间接原因中占有重要比例。然后,进行井喷失控的事故致因分析。事故致因理论较多。井喷事故的发生,是由多个事故因素引起的,事故因素的出现具有一定的因果层次性、不同的因素之间相互联系,在一定的环境条件下,最终导致了井喷事故的发生,所以,选择系统分析的方法——鱼骨图法,较为适用,目前这是首次采用该方法进行井喷失控事故致因分析。从物的因素、人的因素、管理因素、环境因素四个方面,深入研究了井喷失控事故的致因因素,为制定井喷失控事故安全管理对策提供了理论基础。在井喷失控中,人的因素贯穿钻井活动的始末,所以进行了人的可靠性分析,采用贝叶斯方法,贝叶斯方法是根据先验分布和样本信息得到后验分布,对于先验分布,对可靠性数据的获取要求不高,如果没有客观资料,可以完全采用主观方法确定。建立了贝叶斯网络的人因可靠性因果层次模型,给出了进行可靠性分析的具体思路。(2)复杂地形重气扩散模型通常由于本身分子量比空气平均分子量大、气体温度低、气体中有液态喷雾存在或者环境温度太低等原因,使得气体的密度大于空气,这样的气体在大气中的扩散,不同于高斯扩散,具有明显的沉降现象,称为重气扩散。H2S具有毒性,相对密度为1.189。根据开县特大井喷事故的人员和动物的伤亡分布情况,可以看出,高含硫天然气发生井喷失控事故时,H2S的沉降现象非常明显。所以,可以把天然气中的H2S作为研究对象,考虑它的重气效应,求解其在复杂地形条件下的重气扩散过程。重气扩散的模型组成为下图所示。对于瞬时释放,改进箱模型,适用于斜坡地形,模型中需要坡地风场输入。对于连续释放,复杂地形条件下,采用Monte-Carlo模型,模型中包含被动扩散情况、密度稍大于空气(即空气密度不能忽略)的情况和密度远大于空气(即空气密度可以忽略)的情况,当模型考虑卷吸效应时,重气密度随扩散逐渐减小,当气体密度小于空气时,扩散转化为被动扩散。Monte-Carlo模型中需要复杂地形风场输入。并分别用不同方法进行模拟计算,由于复杂地形的存在,风场不再是均匀场,风场的改变,则重气物质的扩散过程也变得复杂起来,与平坦地形上的重气扩散差别较大。a)适用于斜坡的改进箱模型风对重气体物质的浓度分布的第一个作用是整体输送;第二个作用是冲淡稀释。所以,重气云团在斜坡上的运动过程分解为两个阶段:第一阶段,以平坦地形箱模型为基础的重气稀释模型。结合风对云团的稀释和输送作用,重气云团做负浮力扩散,在模型中特征参数分布引入相似分布。顶部湍流动能来自三个方面:云团和环境流体速度不同,引起的剪切所产生的湍流;重气云团在地面移动产生的湍流;在大气边界层中产生的湍流。顶部夹卷速率采用TWODEE模型中对Eidsvik的改进方法。通过重气云团的稀释模型,可以得到云团的质量、密度、外形尺寸、夹卷空气质量以及云团内危险物质浓度等随时间的变化情况。第二阶段,重气云团作为一个整体,风对云团在斜坡上的整体输送模型。通过重气云团的稀释模拟,可以得到重气云团的质量、外形尺寸等参数,用于整体输送模型的计算。通过重气整体输送模型,可以得到云团的运动速度、距离等随时间的变化情况。b)复杂地形重气扩散模型对于复杂地形上的重气扩散,采用Monte-Carlo方法进行模拟。Monte-Carlo方法,首先要建立一个随机模型,然后确定随机变量的概率分布,做足够多的随机试验——过程模拟,对实验结果进行统计分析,根据大数定律,问题的解的近似估计值就是观测值的平均值。单个气体分子、微团、粒子、或者足够小的气包在风场的输送过程中,一方面微团粒子受到风的平均风速的平流输送,另一方面,由于风具有随机性,自然风是一种平均风速与瞬间激烈变动的湍流相结合的风,所以,在这个过程中微团粒子的运动也是具有随机性质的,是一种随机过程,从而可以采用Monte-Carlo模拟方法来模拟这一过程。模型的构建考虑了三种情况:①对于气体密度小于空气的情况,微团粒子的运动是平均风场和随机部分的组合。②对于气体密度稍大于空气的情况,空气密度不能够被忽略,在第一种情况的基础上,同时又在微团粒子的运动中引入了重力效应,从而构建出重气扩散模型。在重气扩散模型中,如果考虑卷吸效应,则可以假设微团是一个足够小的小气包,且小气包的膨胀尺度远远小于风的湍涡尺度,那么可以考虑小气包的卷吸效应,在重气的扩散过程中,随着卷吸的进行,小气包密度会逐渐减小,最后就转化为了非重气扩散。③对于气体密度远远大于空气的情况,则空气的密度可以忽略,在粒子的运动过程中引入粒子的重力作用,建立重气扩散模型。模型中的湍流参数,采用了经验公式;风场采用符合质量守恒的诊断模式,需要先采集观测点数据,然后在空间进行水平和垂直插值,垂直插值是按照风速廓线公式,水平插值采用考虑了地形起伏因子的权重系数,从而得到了初始风场。采用变分法对初始风场进行调整,得到了符合质量守恒的诊断风场。最后采用目前国际上比较成熟的软件HYSPLIT进行了重气的扩散模拟,主要是设置沉降速度来确定重气效应。(3)山区高含硫天然气井喷失控事故风险分析首先对风险分析的基本理论进行了深入研究,对风险的定义、特征以及风险分析的内容都进行了介绍。然后将风险分析模型MEVIP模型应用于井喷失控事故的风险分析,模型要素有事故强度I、脆弱性V、事故发生概率P、宏观管理因子M和应急能力因子E,对各个要素进行了分析,并研究了其计算方法。虽然有研究者采用了该模型方法(MEVIP模型)应用于工业园区的风险评价,在井喷失控事故的风险分析中应用该模型方法还属于首次。对井喷失控事故的工艺过程安全系统进行了可靠性分析,主要采用了蝶形图的方法,中间为关键事件——井喷失控事故,左边为事故树原因分析,右边为事件数结果分析。建立了井喷失控事故的蝶形图,选取了其中的一个险情演变进行了研究,是一个典型的喷漏同存的井喷失控事故,造成了毒气云的后果,对其中的每一项的安全屏障进行了研究,为井控工作以及事故后果控制提供了思路和方法。虽然有研究人也采用了蝴蝶结模型分析井喷失控,但是他对于原因的分析并不是采用的事故树方法,对于结果的分析也不是事件树,他只是简单给出了原因和结果,然后对个原因和结果进行屏障。最后,对井喷失控事故中的有毒气体的中毒伤害进行了研究。研究了剂量和反应的关系,深入讨论了毒性气体中毒评价标准,建立了反应剂量曲线模型,研究了急性中毒评估方法。(4)复杂地形高含硫天然气井喷失控事故应急响应首先,分析了符合复杂地形高含硫特征的开县特大井喷事故中的应急救援存在的问题。然后,构建了复杂地形条件下的高含硫天然气井喷失控事故的应急救援体系,对其中的每一个部分都进行了详细的研究。然后,对高含硫天然气井喷失控事故应急响应机制做了研究。分析了制定应急响应机制的原则,给出了天然气井喷失控事故应急响应程序/机制,分析了其中的关键步骤事故报警、应急响应等级制度、应急避灾。对响应等级的确定采用了基于风险的事故分级,对应与事故不同的等级采用不同的应急级别,最后给出了考虑事故风险的响应级别判断表,考虑了事态趋势之后,对于趋势严重的事故,其应急启动级别要采用更高一层次的响应。