论文部分内容阅读
面向不同任务特征的多目标众包任务推荐方法
【机 构】
:
中国矿业大学
【出 处】
:
中国矿业大学(江苏) 中国矿业大学
【发表日期】
:
2019年期
其他文献
本文主要研究的是一类常步长随机逼近算法长期性态与对应的平均方程的动力学性态之间的联系.
在第二章中,我们介绍了本文所涉及的一些动力系统和随机过程的预备知识.
摘 要:单元油层存在砂体分布零散,层系划分较粗,油层出砂严重,采油速度高以及储层原油性质差异较大等特点,经过前期进行综合调整,井网、井距以及注采关系都得到了极大的完善。同时随着防砂技术的改进,实施大泵提液,快速提高了单元的采油速度。但随着2005年后提液措施的实施,综合含水持续上升导致老井产量递减幅度大,综合含水上升0.72%。单元主要工作方向是有效调整产液结构,将采液速度控制在合理范围之内,减缓
本研究运用极大极小方法和Nehari方法并结合一些分析技巧,分析了一类椭圆边值问题解的存在性和多重性,此外还考虑了全空间上带有非局部项的半线性椭圆问题解的存在性问题。研究
本文主要研究了有界区域上的非线性Petrovsky方程(公式略)初边值问题。其中Ω为Rn(n≥1)中具有光滑边界aΩ的有界区域,这里保证散度定理能够应用,v是aΩ上的单位外法向量,avu
矩阵扩充问题就是含子矩阵约束的矩阵方程问题.它在系统识别、力学、控制与工程学等不同的领域都发挥着重要的作用,还是计算数学领域的重要研究课题之一. 本文研究如下问题
2003年12月6日,由武汉大学主办的湖北省党史学界纪念毛泽东诞辰110周年暨党史党建学科建设研讨会在珞珈山举行。来自武汉大学、华中师范大学、中南财经政法大学、湖北大学等
全局优化问题作为一种数学方法在现实生活中已经有了很广泛的应用,尤其是在工程设计、分子生物学、神经网络和社会科学中发挥着重要的作用,因此全局优化问题吸引了很多研究者的
合作是人类社会活动的基础,合作博弈亦成为国际管理科学研究前沿。在动态合作博弈进程中,如果条件允许,局中人可能使用非理性行为来索取额外的收益,而不是执行一开始所达成的合
随机环境中多型分枝过程极限定理的研究在近年来引起了许多学者的兴趣.在已经发表的一些文章中一些学者探索出了随机环境多型分枝过程极限定理的一些相关结论,而且将这些研究