【摘 要】
:
燃料及电量消耗量(以下简称“能耗”)是评价新能源汽车的核心指标。符合我国实际道路行驶状况的能耗测试方法,是车辆性能标定、优化和能耗认证的基础,对我国节能减排战略的实施具有重大的意义。多年来我国对新能源汽车的能耗认证一直沿用欧洲的NEDC(New European Driving Cycle)工况,但多年实践发现以NEDC工况为基准所优化标定的汽车,实际能耗与法规认证结果偏差越来越大。为了解决检测工
论文部分内容阅读
燃料及电量消耗量(以下简称“能耗”)是评价新能源汽车的核心指标。符合我国实际道路行驶状况的能耗测试方法,是车辆性能标定、优化和能耗认证的基础,对我国节能减排战略的实施具有重大的意义。多年来我国对新能源汽车的能耗认证一直沿用欧洲的NEDC(New European Driving Cycle)工况,但多年实践发现以NEDC工况为基准所优化标定的汽车,实际能耗与法规认证结果偏差越来越大。为了解决检测工况的问题,中国汽车技术研究中心牵头组织行业开发了中国工况,经验证中国工况更加符合中国实际。除测试工况外,大量数据显示,我国当前法规的测试条件过于理想化,没有考虑载重、温度、空调开启等实际驾驶状况对能耗的影响。本文选取某轻型纯电动汽车和某轻型插电式混合动力汽车作为参考样车,运用仿真分析的方法,从整车各部分能量损失的角度,探究了不同的测试工况和测试条件对轻型新能源汽车能耗的影响。具体研究内容如下:(1)对纯电动汽车动力系统的关键部件进行选型与参数匹配,在AVL Cruise软件中搭建整车模型,并进行整车性能仿真,验证模型的合理性;在Cruise中仿真分析了NEDC、WLTC(Worldwide Harmonized Light Vehicles Test Cycle)以及中国工况对纯电动汽车续驶里程和能耗的影响;结合工况特征参数,详细分析了行驶工况对整车各部分能耗以及动力部件工作效率的影响,揭示了行驶工况对能耗影响规律的内在机理。研究结果表明:在中国工况下续驶里程最长,能耗最低,在WLTC工况下续驶里程最短,能耗最高;克服空气阻力的能耗低以及较好的制动能量回收效果是中国工况下续驶里程长、能耗低的主要原因。(2)基于中国工况,探究了加载质量、环境温度以及空调开启三种测试条件对纯电动汽车续驶里程和能耗的影响,研究结果表明:加载质量越大,续驶里程越短,能耗越高;相比于常温不开空调,高温空调开启时,续驶里程下降15%,能耗增加17%,低温空调开启时,续驶里程下降31%,能耗增加44%。(3)确定了插电式混合动力汽车模式切换条件,在Simulink中搭建基于规则的整车控制策略;根据样车参数,在Cruise中搭建整车模型,并进行整车性能仿真,验证整车模型和控制策略的合理性;在Cruise中仿真分析NEDC、WLTC以及中国工况对插电式混合动力汽车纯电续驶里程以及电量下降阶段能耗的影响;基于中国工况,仿真分析了加载质量对插电式混合动力汽车电量下降阶段能耗的影响。
其他文献
立式储罐在石油化工等领域应用十分广泛,承担着贮存石油和各种液体的首要任务。一般储罐存储的都是易燃、易爆且危险性较高的有毒介质,储罐一旦在地震载荷作用下遭到破坏,容易造成当地严重的环境污染和经济损失等。目前储罐的发展趋势为浮放式、大体积,储罐的抗震及隔震相关问题是目前研究的热点。基于此,利用有限元软件ADINA建立了15×104 m3非锚固储罐三维实体模型。考虑了流固耦合效应、液面大幅晃动、几何非线
近年来,电子行业呈加速增长趋势,并向规模化方向发展。电子芯片的集成度、封装密度以及工作频率却不断提高,这就使得单位容积电子器件的总功率和发热量大幅度地增长。散热问题成为限制其发展的主要阻力之一,使其成为现今研究热点问题之一。目前电子通信行业的散热技术主要基于自然对流散热、强制风冷散热、液体冷却以及热管散热,而室外电子设备的散热方式受到使用环境以及散热可靠性保障的要求,多以对流换热为主。基于自然对流
射流过程中产生液滴是自然界中随处可见的现象,其广泛存在于医药及工农业生产中。主液滴形成过程中常常有体积更小的伴随液滴出现,在某些领域(如中药药丸制备)过多的伴随液滴会造成资源浪费,影响生产系统正常运行,因此有必要对射流过程中主液滴的形成和伴随液滴的消除进行研究。本文通过数值模拟与试验结合的方式对射流过程中主液滴的形成机理进行研究,揭示滴头内径、液面高度、黏度、表面张力、密度、入口速度以及外加扰动频
水体富营养化带来藻类的暴发性生长,藻细胞向水体环境中释放大量的有害物质,严重降低水质,给饮用水安全保障带来严峻挑战。光催化技术由于高效、低耗、绿色环保等特点而受到广泛关注,但绝大多数的催化剂对可见光响应微弱甚至无响应,限制了其广泛应用。本文为拓宽催化剂的光响应范围,提高可见光的利用效率,制备一种新型可见光响应催化剂Ni-BiOCl,并将光催化技术与磁处理技术相结合,提出了光磁耦合除藻技术。课题以引
低风速地区的风速普遍较小,现有风力叶片无法充分利用低风速区域风能资源。论文基于叶素动量理论及其相关理论设计了一种用于转轮直驱式风机的大力矩风力叶片,具有启动风速较低、转矩系数较大及气动效率良好的特点,并在叶片气动外形基础上设计了结构强度及固有频率符合要求的叶片结构。1.对叶片及叶素翼型的相关概念理论进行研究分析,对叶片及翼型相关参数对气动性能的影响进行了分析,并利用Fluent和Profili软件
工业袋式除尘器因具有除尘效率高、运行可靠等优点,被较为广泛的用于钢铁、水泥、电力及垃圾焚烧等各行业的烟气净化。滤袋作为袋式除尘器的核心部件,在运行过程中一旦发生破损,容易导致出口排放粉尘浓度超标,引起严重的大气环境污染,危害人体健康。工业袋式除尘器的工况复杂多变,且除尘器内悬挂的滤袋数量众多,如何快速准确地定位出破损滤袋并及时更换,是亟待解决的重要问题。针对现有袋式除尘器破袋定位技术不成熟,普遍存
烘缸在干燥行业具有广泛用途。烘缸设备的烘干方式包括传统单层蒸汽烘缸、多通道蒸汽烘缸、红外辐射燃气烘缸、电磁加热烘缸、燃油/燃气加热烘缸及微波干燥烘缸。蒸汽烘缸结构简单,生产成本低,但存在冷凝水难以排出、工作压力高、温度不易控制等缺点。随着天然气的推广应用,红外辐射燃气烘缸逐渐受到重视。本文以提高红外辐射燃气烘缸的壁温均匀性为研究目标,对现有的燃气烘缸进行优化改进,采用数值模拟及实验研究方法,分析烘
海上风力发电机运行环境恶劣,其绕组电磁线绝缘用聚酰亚胺薄膜长期处于高温高湿等极端气候环境下,面临的电荷积累及局部放电问题突出,导致其绝缘老化与破坏过程更为复杂。本文以聚酰亚胺绝缘为研究对象,分别采用无机纳米Al2O3和Si O2填充方法制备了聚酰亚胺纳米复合薄膜,测试了其介电常数和电阻率,研究了其在不同温度与湿度环境下的表面电位衰减特性、陷阱分布特性及击穿特性,并通过反应力场进行了聚酰亚胺微观裂解
无线电能传输技术摆脱导线、电缆的束缚,可以实现电能的无线传输,成为了新世纪人们研究探索的方向,磁耦合谐振式无线电能传输因在中短距离传输上可达到很高的功率传输效率而被广泛关注。然而,传输距离或负载的改变会导致输入阻抗与射频内阻不匹配,引起功率传输效率急剧下降,甚至无法满足一些用电设备正常工作的要求。要提高系统的传输效率就必须使系统工作在最优效率的阻抗下,因此要求效率适应不同距离和负载,阻抗匹配是一个
电动汽车驱动系统逆变器是电动汽车控制系统的重要组成部分,IGBT(Insulated Gate Bipolar Transistor,IGBT)模块则是电驱逆变器的核心功率开关器件,其可靠性对电驱逆变器乃至整个电动汽车都至关重要。电动汽车工况中由于工况车速的随机性与波动性,IGBT模块承载间歇性电气应力,由于模块内部产生功率损耗,使得结温也会剧烈波动,进而导致模块内部各个封装结构承受电热循环应力。