横观各向同性涂层结构和压电陶瓷涂层器件的三维接触

来源 :湖南大学 | 被引量 : 0次 | 上传用户:zcom0907
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
涂层结构在工程中被广泛应用于提高结构的可靠性和耐久性,这类结构失效的主要原因是由于各种接触载荷引起的涂层和基体内及其界面上的应力集中。压电陶瓷涂层器件在工程中被广泛用作传感器、激励器和俘能器等重要的功能器件。对于涂层结构和压电陶瓷涂层器件在力电接触载荷作用下机电场的精细计算是对其进行安全性和功能性分析和设计的必要条件。基于这一工程需求,本学位论文对横观各向同性涂层结构和压电陶瓷涂层器件在工程中最为常见的球面、锥面和柱面三种力电接触载荷作用下的三维机电场进行了研究,系统给出了一系列的解析解。主要工作成果包括以下三个方面。(1)对于横观各向同性涂层结构,基于横观各向同性材料三维机械场控制方程的通解,考虑光滑和有摩擦接触两种情况,分别推导得到了涂层结构在球面、锥面和柱面三种机械接触载荷作用下,涂层和基体内机械场的三维全场解析解。并基于所得到的解析解计算了接触半径,优化了涂层厚度,讨论了界面脱层区域,并优选了涂层材料。基于此,对涂层结构进行了精细的安全性分析和设计。(2)对于压电陶瓷涂层器件,分别基于压电陶瓷材料耦合的三维机电场控制方程的通解和横观各向同性材料非耦合的三维机电场控制方程的通解,分别推导得到了压电陶瓷涂层器件在球面、锥面和柱面三种机电接触载荷作用下,压电陶瓷涂层内和基体内机电场的三维全场解析解。并基于所得到的解析解对压电陶瓷涂层器件分别进行了安全性和功能性分析和设计。(3)基于以上研究成果和数学平台编制了涂层结构接触力学专用软件平台。由于采用的计算方法不是传统的数值计算方法(如有限单元法),而是直接以显式函数给出的三维全场解析解,所以该软件平台具有很高的计算精度和计算效率。在使用过程中计算技巧简单,非常方便于工程界的应用。利用该平台,降低工程人员设计成本,快速准确地找到各个影响因素的相互关系,从而抓住主要矛盾,事半功倍地解决问题,以获得成本低廉,性能优越的涂层结构。
其他文献
学位
学位
学位
随着电子器件小型化趋势的发展,需要具有同样尺寸的器件帮助将聚集的热量散发出去;同时随着能源危机的加剧,人们在迫切寻找低成本提高能源效率的方法。有机分子尺度的热电材料可以同时满足这两种需求,因而越来越受到人们的重视。本论文围绕有机分子尺度材料为研究对象,展开了热电输运机理、热电性质和性能调控的研究。对于有机分子器件,我们研究了分子器件中电极与中间分子的接触方式、耦合变化以及桥接原子替换、电极的掺杂和
随着微光机电和生物微流控技术的发展,近年来具有衍射、减反、疏水或微流控功能的微结构玻璃元器件得到了越来越多的关注和应用。无机非晶玻璃材料相对于聚合物在光透性、热化学稳定性和生物相容性等方面有着天然优势,然而,其固有硬脆性和高软化温度也增大了其微结构去除加工与热成型难度。对于球面、非球面和光顺自由曲面玻璃透镜,目前主流的制造方式为精密模压成型;相对于传统去除加工技术,模压技术在玻璃材料利用率、加工精
晶体管问世以来,集成电路一直按照摩尔定律飞速发展。集成电路技术也将引领新时代的科技潮流。在未来几十年中,科学技术将进一步朝着人工智能、大数据分析、物联网以及量子计算等高科技方向持续发展。毫无疑问,新一代集成电路将是这些新兴科技的重要组成部分。然而,随着后摩尔时代的到来,当晶体管的尺寸缩小到纳米尺度,由量子效应带来发热、功耗等物理学问题,使半导体集成电路行业发展减速,从而影响了整个科技行业进步。因此
纤维增强复合材料(fiber reinforced plastics,FRP)具有高比强度、高比模量等优异的力学性能,越来越广泛的应用于载人航天、轨道交通和其他海陆空载体等众多领域的结构设计。详细研究复合材料在冲击载荷下的力学行为,如:失效准则、破坏模式、吸能机理等,对指导复合材料结构设计,提高结构的吸能特性和碰撞安全性有重要的理论意义和应用价值。本文对玻璃纤维和碳纤维增强复合材料吸能结构在冲击载
核聚变能是一种极具前景的未来能源,开发合适的聚变反应堆材料是聚变能源发展的重要挑战之一。金属钨(W)由于具有高熔点、良好的导热性、高物理溅射阈值等优良特性,被视为未来核聚变反应装置中最有可能全面应用的面向等离子体材料(PFM)。在高能中子(14.1Me V)辐照下,W材料中除产生大量的辐照缺陷外,还会产生嬗变元素,如铼(Re)、锇(Os)、钽(Ta)、铪(Hf),其中Re是主要嬗变产物,在辐照下会
汽车保有量的逐年增长,引起了系列社会问题,如能源过度消耗、环境污染等。由于汽车车身质量约占整车重量的30%-40%,采用轻质材料进行车身轻量化是降低能耗的重要途径和研究趋势。近年来,碳纤维增强树脂基(Carbon fiber reinforced polymer,CFRP)复合材料以其优异的比强度/刚度、易于成型、耐腐蚀和碰撞吸能特性,越来越广泛地应用于汽车车身结构。然而,与传统金属材料相比,CF
随着汽车工业的发展和人口的大量增长,汽车保有量越来越大,能源危机和环境污染都引起了人们的重点关注,能源短缺危机和环境问题的日益加重迫使人们投入大量人力财力来寻找一个可替代的清洁能源来作为内燃机的替代燃料,摆脱对原油的依赖。天然气便是一种很有发展潜力的内燃机替代能源,它与汽油、柴油这些传统统内燃机燃料相比具有氢碳比高,燃烧热值高等优点,但由于其火焰传播慢,热效率低等缺点,导致其多年来并未受到市场的青