【摘 要】
:
当前,几乎所有的微纳米光电器件均是理论与实践相结合而诞生的,量子理论与新型结构的结合预测了器件应有的性质,实践制造过程中产生的新现象又可能推动理论上的突破,二者缺一不可。然而,如今微纳光电器件对集成度的要求急剧升高,因此在设计微纳器件时,要实现越来越复杂,密集和稳定的片上光网络,将需要综合探索大量的参数空间,以便于实现更小的器件尺寸和更高性能的设备。通常情况下,基于全理论的光学器件设计很难兼顾很大
论文部分内容阅读
当前,几乎所有的微纳米光电器件均是理论与实践相结合而诞生的,量子理论与新型结构的结合预测了器件应有的性质,实践制造过程中产生的新现象又可能推动理论上的突破,二者缺一不可。然而,如今微纳光电器件对集成度的要求急剧升高,因此在设计微纳器件时,要实现越来越复杂,密集和稳定的片上光网络,将需要综合探索大量的参数空间,以便于实现更小的器件尺寸和更高性能的设备。通常情况下,基于全理论的光学器件设计很难兼顾很大的参数空间,而基于目的的计算机算法策略则可以在约束结果的同时尽可能在参数空间中寻找到最佳的参数组合。这些算法包括遗传算法,粒子群优化算法,水平集方法和特定几何参数等方法。因算法具有的这些优势,本文利用算法进行了两类器件的设计与优化,主要内容如下:(1)提出了一种新的光二极管设计方案,使用遗传算法(GA)设计了一组光学二极管,其器件面积仅为2.5×2.5μm~2,并且GA设计的这组器件具有实现高效单向传输的能力。仿真表明,1400 nm~1600 nm波长的高斯光束正向传输效率平均值可达65%以上,在1550 nm波长处达到峰值传输效率75%。设计波长在1500 nm~1600 nm的光二极管传输对比度平均值高于90%,满足单向性高、工作带宽更宽、面积小等要求。与光子晶体和光栅设计的结构相比,这些器件在光学二极管方面具有更多优势,例如透射对比度高、带宽大、体积小的优点。该方案的应用为全光二极管在光通信领域的设计和研究提供了新的思路。(2)提出了一种使用粒子群算法(PSO)优化塔姆态等离子体光探测器结构的方法,与传统的塔姆态等离子体光探测器采用周期性布拉格反射层(DBR)的结构不同,光探测器中的DBR的厚度和材料由PSO算法来决策,使用PSO优化设计塔姆态等离子体光探测器显著减小了其尺寸。仿真结果表明,采用PSO对塔姆态等离子体光探测器进行优化设计后,第一类光探测器的厚度由480 nm显著减小至271 nm,第二类光探测器的厚度由2500 nm显著减小至1215 nm,与原塔姆态等离子体光探测器相比,通过PSO设计的光学探测器具有光学性能不变、器件尺寸更小、更有利于集成的优点。该设计方法的提出,为光探测器的设计与研究提供了新的参考与思路。
其他文献
单像素成像作为一种新型成像方式,在图像信息采集与成像方式上,区别于传统的阵列式成像。它通过投影一系列的基底照明图案,采集目标物体的空间信息,并由单像素探测器采集反射光强,最终重建目标物体图像。单像素成像灵敏度高,因此在显微成像、透过散射介质成像等对灵敏度要求较高的成像场合备受关注;尤其是在红外等阵列传感器不成熟的成像波段,单像素探测器的制作难度与成本更低;此外,采用单像素成像还有利于成像系统的简化
介电材料作为重要的电子材料,在不同领域有着广泛地应用。测量介电材料的介电谱、阻抗谱、伏安特性等宏观特性,是研究介电材料的微观结构以及其微观组成部分相互作用的重要手段,对介电材料在不同领域的应用有着重要的意义。然而,目前有关介电材料特性测量系统设计主要依赖于以测量仪器为主的硬件系统,测量功能单一且固定,操作繁琐,无法满足介电材料多变的测量需求。为了提高系统测量效率以及可扩展性,本研究基于虚拟仪器以软
单像素成像技术作为一种新颖的计算成像方法,可以通过探测目标反射或者透射光进行成像。该技术具有系统简单、成本低廉、利于集成化、能够实现宽谱成像等优点,在光学成像领域迅速获得关注并被逐步发展。单像素成像技术的核心是使用单像素探测器获取不同的基底图案和目标物体之间的相关强度(即待测物体的二维图像与基底图案的内积),再根据相应的算法来恢复图像。然而,无空间分辨率的单点光电探测器无法一次探测直接获取待测物体
随着基础科学与工程技术的进步,计算成像技术获得了快速的发展,在各个领域获得广泛的应用。单像素成像技术作为一种新型的计算成像技术,不同于传统的具有成千上万像素的阵列式相机成像技术,其仅采用了单个像素的探测器就能拍摄得到一幅二维图像,这使得单像素成像技术具备低成本和可集成度高的特点。此外单像素探测器还具有高检测灵敏度、宽光谱响应率、精确的时间分辨率等一系列优点,因此单像素成像技术在各个领域得到了广泛的
随着我国工业生产水平快速地提高,智能化进程不断地推进,传统的电子传感器由于其点式测量和电学原理的局限性,已经无法满足许多大型工业设施和基础建设的温度检测的需要。光纤传感技术凭借其测量距离长、可分布式测量、本质安全等诸多优点,非常适合上述场景的温度检测。因此本文内容主要围绕基于受激布里渊效应的光纤传感温度测量系统设计来展开,主要内容有以下几个方面:(1)本文对目前主要的几种光纤传感系统进行了比较分析
体温是一项重要的生理参数,通常情况下,体温的异常往往代表着疾病的发生。特别是,2020年初新冠疫情爆发以来,对体温准确快速检测的需求激增。本文通过研究红外测温理论相关文献以及对现有的主流红外测温仪分析,针对大型成像测温仪价格昂贵,红外测温枪测量范围短,人脸识别测温一体机没有考虑到环境温度和测量距离的影响造成误差较大等问题,本论文利用FPGA和红外探测器作为核心元件,通过集成人脸检测和环境温度距离校
生物3D打印由于其个性化定制、快速精准成型的显著优势,近年来受到了广泛的关注。生物墨水既是打印的对象,也是决定打印效果和功能效果的关键。目前生物3D打印的挑战之一就是生物墨水需要同时满足可打印性和材料性能的要求,这就造成了可打印的生物墨水有限,故开发新型生物墨水或者改进生物墨水是推动生物3D打印发展的重要一步。“可打印性”是评价生物墨水适合生物打印程度的重要指标,因此,在研发新的生物墨水时,为了更
光纤光栅传感技术作为众多光纤传感检测技术中的一种,其在继承了光纤传感技术众多优势的基础上,还具有检测精度高、可测量参数多、体积小巧便于构成准分布式传感网络等优点,因此在灾情预警、建筑结构安全、船舶工业、航空工业等领域得到了广泛的应用。与此同时,为了应对不同情景下的光纤光栅解调需要,相关学者提出了许多各具优劣的解调方案。目前市面上现有的光纤光栅解调设备大多存在价格较高、体积较大、性能指标难以满足实际
数字图片比色分析技术通过使用RGB、HSV、CMYK等色度空间对显色产物的色彩信息量化,相较传统目视比色法减少了大量主观误差。而智能手机兼备数字图片比色分析技术的图像传感器、图像处理设备和图像分析软件等条件,并在2022年世界普及率高达59%,因此通过调用摄像头采集图片结合开源Android Studio开发软件实现生化分子定性、定量检测成为检测领域前沿方向。但在实际研发中发现,数字图片比色分析法
分布式光纤振动传感技术采用光纤作为敏感元件,具有体积小、重量轻、隐蔽性好、敷设成本低以及抗电磁干扰等优势,在煤矿监测、石油勘探等特殊环境中发挥着重要作用。相干探测相位敏感光时域反射仪(Coherent Detection Phase-sensitive Optical Time Domain Reflectometer,相干探测Φ-OTDR)是一种典型的分布式光纤振动传感技术,利用瑞利后向散射光与