论文部分内容阅读
为了保证输油管道输送的安全、高效,减少由于如磨损、腐蚀、意外损伤等各种原因引起的管道潜在的泄漏风险,需要对管道进行定期的检测和维护,避免管道泄漏造成的能源浪费和环境污染;需要在管道泄漏发生之前预先检测出管道中的异常,识别缺陷,从而对管道进行修复,保证管道安全使用。目前,管道检测技术中,漏磁检测(Magnetic flux leakage,简写为MFL)技术通常用于检测钢铁管道中的金属损失缺陷,该技术作为最常用的非破坏性检测技术之一,为评价管道的安全性、预测管道寿命、对管道进行检修维护等提供可靠依据。本文针对长输管道漏磁内检测数据进行研究,将管道漏磁内检测数据转化成漏磁图像,对漏磁图像进行智能检测和识别,同时对检测到的缺陷区域进行三维轮廓重构。针对上述问题开展了大量的研究和创新工作。论文研究了管道异常边缘提取方法。在进行漏磁图像缺陷的智能化识别中,异常边缘提取是十分重要的环节,异常边缘的精确程度直接影响到后续的反演评估环节。由于数据噪声的存在,使得边缘提取特别是复杂异常边缘提取精度大大下降,而且,面对庞大的漏磁数据,一般机器学习算法耗时较多。小波多尺度边缘检测方法被广泛用于工业异常提取中,因此,针对漏磁内检测中异常边缘提取问题,提出一种基于数据融合的小波变换漏磁异常边缘提取算法,将传统的小波多尺度极大值边缘提取和数据融合的思想结合在一起,在算法中加入数据层融合、特征层融合和决策层融合,最终对漏磁内检测中的异常边缘进行精确的边缘提取。论文研究了管道微小异常区域提取方法。针对管道中微小异常区域,提出一种基于U-Net深度网络的微小异常区域提取方法。U-Net网络是改进的全卷积神经网络,使用少量数据就可以较好对图像的细节特征进行提取,应用在管道漏磁内检测中,可以有效的对微小异常区域进行准确提取。为了提升提取确性,本文对U-Net网络模型进行改进,并提出一个基于对抗网络的训练方法。所提方法能准确、完整地对微小异常区域进行提取,保留漏磁图像异常区域细节特征,具有较强的鲁棒性、较高的精度和效率。论文研究了管道组件和缺陷的识别方法。针对管道内检测中组件和缺陷的识别,提出一种基于卷积神经网络的深度网络缺陷识别方法。该方法采用改进的卷积神经网络算法,可以提高管道组件和缺陷图像的识别精度,精度指标可达到90%以上。该方法不仅对信噪比不明显样本有较高的识别灵敏度,对漏磁图像也具有良好的位移鲁棒性和畸变鲁棒性。论文研究了管道缺陷轮廓重构方法。在漏磁检测中,可以通过测量的漏磁信号重建缺陷的轮廓,缺陷的三维轮廓重构可以对缺陷进行定量的研究,无论对缺陷的尺寸评估还是对于实际项目缺陷重构的可视化展示,都有一定的实际意义。本文提出一种基于偏差估计的随机森林缺陷三维轮廓重构方法。该方法利用随机森林算法通过估计信号和实际信号之间的偏差估计重构轮廓偏差,通过优化参数更新缺陷轮廓,最终可实现缺陷三维轮廓的重构。所提出的方法在缺陷轮廓重构精度上具有良好的效果。本文通过基于数据融合的小波变换提取漏磁异常边缘,并通过U-Net网络进一步提取漏磁图像的细微异常区域;通过改进的卷积神经网络对漏磁图像的组件和缺陷进行智能识别;通过基于偏差估计的随机森林缺陷三维轮廓重构方法对检测到的缺陷区域进行轮廓重构,实现了对长输管道缺陷进行智能检测和识别的目的,确保管道运输安全。