【摘 要】
:
随着建筑与交通行业的不断发展,我国城市建设的规模越来越大。由于砂土在我国的分布十分广泛,越来越多的建筑物和轨道交通建设在了砂土地基之上。近年来,地震活动导致的砂土大面积液化造成了巨大的经济损失,因此,以砂土为代表的颗粒材料的动力学特性成为了时下岩土工程研究的热点。砂土作为一种典型的颗粒材料,力学特征十分复杂,在不同的受力情况下表现出的力学性能有很大差异,在不同的变形尺度上可表现为小应变、塑性变形以
论文部分内容阅读
随着建筑与交通行业的不断发展,我国城市建设的规模越来越大。由于砂土在我国的分布十分广泛,越来越多的建筑物和轨道交通建设在了砂土地基之上。近年来,地震活动导致的砂土大面积液化造成了巨大的经济损失,因此,以砂土为代表的颗粒材料的动力学特性成为了时下岩土工程研究的热点。砂土作为一种典型的颗粒材料,力学特征十分复杂,在不同的受力情况下表现出的力学性能有很大差异,在不同的变形尺度上可表现为小应变、塑性变形以及液化大变形。当下对颗粒材料力学性能的研究,一般采用常规的室内试验,以试验现象为基础探讨其力学特性,但试验现象无法揭示颗粒材料力学行为发生的微观机理,以此为基础进行的试验研究具有极大的不确定性。本文首先总结分析了国内外关于颗粒材料动力特性的研究进展,得出现有研究的不足,基于此,从微观角度出发,针对颗粒材料力学特性发生的微观机理结合试验与数值模拟分析开展了如下研究:(1)从颗粒接触的微观角度出发,将颗粒-颗粒因接触产生的能量单元看作一个能量状态。通过理论分析,确定颗粒材料中能量状态的分布符合Maxwell统计分布模型。在此基础上,定义了颗粒接触的失效条件,得到了外界动荷载作用下颗粒材料的软化模型,基于此,通过引入蠕变模型,获得了循环动载作用下材料的流化变形本构。(2)引入状态参数,基于系统在自然条件下总是会趋于稳定这一热力学依据,忽略客观因素的影响,对系统在理想条件下模量的演化状态进行了定性分析,得出了颗粒材料模量在衰减和恢复过程随时间演化的模型。(3)基于(1)(2)提出的理论模型,使用共振柱与GDS空心扭剪仪(SS-HCA)完成大量室内试验,获取了颗粒材料动力响应下模量的软化、不同受力状态下模量的演化、动荷载作用下的流化变形等重要室内试验结果。拟合获取了重要参数α,β,η,a,r,D,深入探讨了各个参数的变化规律及各参数之间存在的联系,将理论模型预测结果与试验结果进行了对比分析、讨论和总结。(4)结合PFC3D离散元软件,对颗粒材料在试验中的受力情况进行模拟,导出了颗粒材料微观接触的分布与在动荷载作用下的流化变形情况,将颗粒接触状态以及在外加荷载作用下材料的变形情况与室内试验结果进行了模拟验证。
其他文献
桥梁作为交通的关键枢纽和控制节点,是国家的重要基础设施之一,其运行监测及维修养护需要高精度变形监测的支持与保障。随着全球导航卫星系统(Global Navigation Satellite System,GNSS)的日益完善,其在高精度位移监测领域得到了广泛应用。变形数据的处理需要有可靠的分析方法与较高的精度,而GNSS变形监测易受多路径效应和接收机背景噪声的影响,导致变形监测数据精度不高,局部均
随着高速铁路的迅速发展及高速动车组运行速度不断的提高,高速动车组与空气之间产生的相互作用更加显著,为进一步提高高速动车组舒适性及减少能源消耗,使得高速动车组减阻降噪成为研究重点之一。本文研究以CRH3型动车组为对象,基于仿生学思想,将非光滑表面结构应用到高速动车组表面不同部位,采用数值模拟方法研究其对高速动车组空气阻力和摩擦噪声影响,论文的主要内容如下:通过Pro/E软件建立CRH3型动车组简化三
交通运输业是经济发展的大动脉,随着经济的快速发展,,人们对各种交通工具的依赖越来越强,各种车辆的不断增加给道路交通带来了巨大的压力,拥堵、交通事故等问题也随之增加,人们对于一个更完整的智能交通系统(Intelligence Transport System,ITS)的需求也就越来越强。而交通流预测作为ITS的研究重点也正在受到越来越多的关注。如何提高短时交通流的预测精准性及预测速度,为交通管理部门
高速铁路的迅猛发展,极大地方便了人们的出行。与此同时,高铁通信场景中车体穿透损耗高、信息私密性强以及需求量大等特点,对面向高铁的无线通信系统设计提出了新要求。而协作通信技术能够有效扩大信号覆盖范围、改善通信质量,还能从物理层提高信息传输安全,因此被广泛应用在高铁通信中。除了传统中继外,无源的智能反射表面(Intelligent Reflecting Surface,IRS)技术不仅可以帮助提升系统
全并联AT牵引供电系统因供电性能强和对通信线干扰低而广泛运用在中国高速铁路。其线路拓扑结构复杂,相比于其他供电方式发生故障的概率是最高的,特别是短路故障类型。牵引网没有备用线路,一旦出现故障,会影响铁路部门生产安全,现有故障测距装置的测量精度受多种因素影响。行波法在电网的成熟运用,且牵引网无此类装置,因此采用行波法对牵引网故障定位是非常重要的研究课题。首先,本文对全并联AT牵引供电系统及其他各种供
中国电气化铁路迅猛发展,随之给牵引供电系统带来的负序、无功及谐波问题日益严重,威胁着牵引网及公用电网的安全稳定运行。铁路功率调节器(Railway Static Power Conditioner,RPC)最早由日本专家提出,该装置在解决铁路牵引供电系统中的电能质量问题方面做出了重大贡献。模块化多电平换流器(Modular Multilevel Converter,MMC)结构的RPC,能够有效解
作为实现我国铁路现代化的两大重要战略支点,重载运输和高速铁路分别在货运与客运方面蓬勃发展,是助力我国经济发展、实现工业现代化的两架马车。重载列车因牵引车辆数目庞大,导致其运行过程中编组内部车辆的受力情况,相较于动车组列车更为复杂,主要以车钩力的形式表现的车间作用力,其数值大小对列车能否实现安全运行产生直接影响,必须将其控制在一定范围内,防止出现车钩断裂、脱钩、脱轨等事故的发生。传统的重载列车驾驶,
轮轨作为轨道交通车辆运行的关键基础部件,肩负着承载、牵引、制动等重要功能,因而有效评估黏着、磨耗等轮轨关系对轨道交通运输的经济性和安全性具有重要的意义。随着现代轨道交通的日益发展,列车运行速度不断提高。车辆出入站台时的高加速化和高减速化是进一步提高运营速度的必然选择,启停快、站距短、噪音低已成为现代轨道交通发展的必然趋势。轮轨界面的损伤也日益凸显,特别是相比恒速运行时,启停过程中加/减速导致轮轨界
风挡区域位于车厢之间的连接部位,空气在风挡区域的流动非常复杂。动车组在运营过程中出现外风挡撕裂、内风挡异常振动以及乘务员室噪声低沉等现象,严重影响列车运行的安全性和客室舒适性。因此,对列车风挡区域进行空气动力学研究是非常有必要的。本文利用实车试验和数值仿真相结合,对风挡区域的空气动力学性能进行研究。数值仿真计算中,以列车空气动力学理论为基础,建立了6种外风挡方案列车流场计算模型,分别计算了6种方案