论文部分内容阅读
基于活性粉末混凝土(Reactive Powder Concrete,简称RPC)高强度、高耐久性、高韧性和低徐变等优越性能形成的RPC单层工业厂房,可以解决普通钢筋混凝土厂房自重大、不利于施工吊装,以及钢结构厂房耐久性差等缺点,具有良好的应用前景。基于此,本文以湖北省武汉市某生物发酵垃圾干化项目厂房为背景,拟定了静力可行的RPC单层工业厂房结构体系。并在此基础上,研究了RPC单层工业厂房结构的稳定性、抗震性能、预应力RPC梁的受弯及抗剪性能。主要内容和结论如下:(1)RPC单层工业厂房的结构体系及静力性能分析。确定屋面梁、排架柱等构件的截面尺寸及配筋,拟定了静力可行的RPC单层工业厂房结构体系,根据有关规程分析了屋面梁和排架柱的承载能力极限状态和正常使用极限状态。结果表明:屋面梁正截面抗弯承载力及斜截面抗剪承载力均符合规程要求,正常使用极限状态满足规程要求;排架柱正截面受压承载力满足规范要求,荷载准永久组合下的初始偏心距与截面有效高度之比e0/h0≤0.55,可不验算裂缝宽度。(2)RPC单层工业厂房结构体系的稳定性分析。采用MIDAS建立了单层工业厂房的有限元模型,分析以下5种屋盖施工工况的结构稳定性:轴1号屋面梁的安装;布置轴2号梁与轴3号梁之间刚性系杆和水平支撑的过程;屋面梁、刚性系杆和水平支撑布置完成后的结构稳定性;铺设屋面板过程的稳定性;铺板完成后使用阶段的稳定性。结果表明:屋面梁与柱顶连接处X轴转角的约束与否将对屋面体系稳定性造成较大影响,建议在实际施工过程中设置临时支撑;架设轴1号屋面梁时,由于此时未设置任何系杆和支撑,因此在连接轴1号梁和轴2号梁刚性系杆之前,吊车吊钩不能放松;是否考虑屋面板的支撑作用对屋面体系稳定性有较大的影响,铺板过程中应边铺边焊。(3)RPC单层工业厂房抗震性能分析。基于所建立的MIDAS数值分析模型,选择合理的地震波,运用时程分析法对RPC单层工业厂房抗震性能进行分析,并根据《建筑设计抗震规范》(GB 50011-2010)验算结构构件在基本组合作用下的截面抗震及在标准组合作用下的抗震变形。结果表明:地震波的选择满足地震动三要素(频谱特性、持时及有效峰值)要求;屋面梁和排架柱满足多遇地震作用效应和其它荷载效应基本组合下的截面抗震验算;结构弹性层间位移满足多遇地震作用标准组合下的抗震变形验算。(4)预应力RPC梁的受弯性能分析。通过非线性有限元分析软件DIANA建立单层工业厂房屋面梁模型,并在模型验证可行性基础上,对预应力RPC屋面梁受弯性能进行分析。结果表明:有限元计算结果与试验梁实测结果的极限荷载仅相差1%,跨中位移仅相差4%,该模型对分析此类工字形截面梁受弯性能具有较高精度;预应力RPC屋面梁在达到极限荷载时,受压区混凝土压坏且钢筋屈服,表现出较好的延性,极限荷载值大于荷载基本组合设计值,满足要求。(5)预应力RPC梁的抗剪性能分析。通过对3根预应力RPC箱梁抗剪性能的试验研究,对比分析了不同剪跨比下试验梁的荷载-位移关系、开裂荷载、抗剪承载力及破坏形态的发展规律。并采用有限元软件DIANA建立试验梁模型,基于所建立的DIANA数值分析模型,对预应力RPC梁的斜截面抗剪承载力进行了较为系统的参数分析。结果表明:随着剪跨比的增大,试验梁依次表现为斜压、剪压和斜拉三种破坏形态,且抗剪承载力逐渐减小;DIANA有限元数值分析模型计算结果与试验结果吻合良好,可用于分析此类预应力RPC试验梁的抗剪性能;预应力RPC梁抗剪承载力随预应力增大呈现先增大后减小的规律;当截面受到的预压应力与混凝土轴心抗压强度之比达到0.40.5时,RPC梁抗剪承载力达到最大值;箱梁上翼缘宽度与腹板厚度之比小于7.0时,翼缘宽度增大会使得箱梁抗剪承载力增加,而上翼缘宽度与腹板厚度之比大于7.0时,翼缘宽度的变化几乎对箱梁的抗剪承载力无影响,虽然翼缘宽度对箱梁与工字梁抗剪承载力影响规律相同,但箱梁上翼缘宽度与腹板厚度之比临界值为7.0,高于工字梁的临界值4.0,可见箱梁上翼缘宽度的抗剪作用有效工作范围优于工字梁。