论文部分内容阅读
近些年来,关于金属键的化学领域研究日臻成熟。金属-金属多重键的形成不仅能说明化合物的几何构型,更为重要的是可以从其结构了解它的化学性质。目前,关于双核Ru2n+的结构和性质研究广泛,尤其是关于Ru-Ru金属键化合物的结构和磁性研究。一些非羧酸类的O,O’-配体螯合Ru2能够形成结构新奇、性质独特的化合物,因此对这类新化合物进行深层次的研究是非常必要的。本论文主要从以下四个不同的维度来描述双核钌配合物的结构及磁性:1.轮状双核钌的零维化合物利用CO32-桥连Ru2和硫酸胍进行自组装反应,得到了 1个零维化合物[C(NH2)3]3[Ru2(CO3)4(H20)2]·3H2O(5);采用溶剂挥发法,[Ru2(O2CCH3)4]+与 HPO32-反应得到了 2 个零维化合物 H[Ru2(O2CCH3)2(HPO3)2(H2O)2]H2O(6)和H[Ru2(O2CCH3)4(H2PO3)2]·4H2O(7);利用 Na4[Ru2(hedp)2Cl]与过渡金属 M(M = Ni)进行自组装,得到了 1个零维化合物H[Ni(H2O)6][Ru2(hedp)2(H2O)2]·3H2O(9)。这四个化合物都表现出反铁磁相互作用。2.轮状双核钌的一维化合物使用溶剂挥发法,以化合物7为原料在水溶液中继续与H3PO2反应得到了 1个一维链状化合物[Ru2(O2CCH3)4(H2PO2)]3H20(8),此化合物体现弱的反铁磁耦合。3.轮状双核钌的二维化合物过渡金属M(M=Co,Zn)与Na3Ru2(CO3)4以不同的桥连方式在水溶液中得到了 2个具有二维层状结构的化合物:H{[Co(H2O)4]2[Ru2(CO3)4Br2]}·6H2O(2),[Zn(H2O)6][ZnRu2(CO3)4(H2O)2]2· 14H20(4)。在化合物 2 中,每一个双核轮状单元[Ru2(CO3)4Br2]5-与四个[Co(H2O)4]2+通过CO32-以反式方式桥连,从而形成二维层状结构;在化合物4中,Zn2+将4个[Ru2(CO3)4(H2O)2]3-连接起来形成2D层状结构。化合物2表现出铁磁相互作用,而化合物4则表现出反铁磁相互作用。4.轮状双核钌三维化合物通过溶剂挥发法,Na3Ru2(CO3)4与过渡金属M(M=Cd,Zn)进行组装形成了 2个具有三维网状的化合物:H{[Cd(H2O)4]4[Ru2(CO3)4]2[Ru2(CO3)4(H2O)2]}·8H20(1)和Na{[Zn(H2O)4][Ru2(CO3)4]}·2H2O(3);利用K4[Ru2(hedp)2Cl]与金属Y进行组装反应,得到了 1 个三维网状化合物[Y(H20)4][Ru2(hedp)2(H2O)2]3H2O(10)。在化合物 1 中,Cd(l)2+和Cd(2)2+离子分别以顺式和反式通过CO32-中的O原子将不同层中的两个Ru2(CO3)43-连接起来形成3D网状结构;在化合物3中,Zn2+离子以顺式将不同层中的两个Ru2(CO3)43-连接起来形成3D网状结构;在化合物10中,Y3+与相邻的各个双核单元[Ru2(hedp)2(H2O)2]3-通过hedp上的O原子连接形成3D网状结构。化合物1表现出顺磁性,化合物3则表现出铁磁相互作用,为一软磁体,化合物10却表现出反铁磁相互作用。