几类发展方程的概周期型广义解

来源 :哈尔滨工业大学 | 被引量 : 0次 | 上传用户:yeyayuqiya
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
众所周知,发展方程在生物学、化学、物理学和工程学等领域有很多应用。脉冲发展方程描述了一类经历突变的发展方程,这些突变都是瞬时发生的,脉冲随机发展方程是随机发展方程经历脉冲扰动得到的。脉冲发展方程结合了微分方程和差分方程的性质,更深刻、更精确地反映事物的发展规律。因此,发展方程的相关问题得到了广泛的关注,尤其是对发展方程广义解的存在性及稳定性的研究。丹麦数学家H. Bohr于20世纪20年代提出了概周期函数的概念,因为概周期函数不但具有周期函数的性质,而且还有许多其他特性,概周期函数比周期函数能在更广范围内较好地刻画客观现象。所以,概周期函数一经提出,就吸引了许多数学工作者的关注。目前,概周期函数理论研究主要包含概周期函数的推广和概周期型函数在方程领域的应用,而后者侧重于对方程的概周期型解的存在唯一性及稳定性的研究。基于以上原因,关于发展方程特别是脉冲发展方程和脉冲随机发展方程的概周期型广义解研究也变得越来越重要了。本论文的主要研究工作如下:首先,给出逐段概周期函数的一些复合性质,并将其应用到脉冲发展方程中,研究一类脉冲发展方程逐段概周期广义解的存在性及稳定性。到目前为止,对脉冲发展方程逐段概周期广义解的存在性研究大多是使用压缩映射定理,而这需要扰动函数满足Lipschitz连续的条件。本文给出逐段连续函数集相对紧的一个等价定义,利用Schauder不动点定理证明逐段概周期广义解的存在性,这种方法克服了对扰动函数满足Lipschitz连续条件的限制。另外,还利用广义Gronwall-Bellman引理对逐段概周期广义解的稳定性进行了探讨。其次,在逐段连续函数空间中引入伪概周期函数,定义逐段伪概周期函数,讨论逐段伪概周期函数的等价定义、唯一分解性、平移不变性及复合性质等,并给出一类脉冲发展方程逐段伪概周期广义解的存在性及稳定性。逐段伪概周期函数是逐段概周期函数和伪概周期函数的推广,它能在更广范围内较好地刻画客观现象。最后,给出逐段平方平均概周期函数的复合性质,分别使用Schauder不动点定理和压缩映射定理证明两类脉冲随机发展方程的逐段平方平均概周期广义解的存在性及稳定性。简言之,本论文研究向量值概周期型函数的性质,并将其应用到脉冲发展方程和脉冲随机发展方程领域,探讨了脉冲发展方程和脉冲随机发展方程的概周期型广义解的存在性及稳定性,丰富了概周期函数理论,拓宽了概周期函数理论的应用范围。
其他文献
军队基层卫生机构在军队医疗保障体系中扮演着承上启下的中间层角色,其职能作用越来越受到各级关注。随着非战争军事行动和多样化军事任务日益增多,对基层部队卫勤保障能力提出了越来越高的要求。本文采用文献检索、专家访谈、问卷调查、座谈了解、现场查阅等方式,从人员、装备、编制、业务、训练、管理六个方面,对某战区陆军基层卫生机构建设发展情况进行了研究,重点围绕人员、装备、编制三个方面展开。并通过改革前后卫生队与
本文主要从用人决策责任机制、破格用人机制两个方面阐述了如何建立干部选拔任用机制问题。文章认为,用人决策者要承担用人失误的责任,用人自主权要与所肩负的岗位责任结合起
威廉·莎士比亚(1564-1616),文艺复兴时期英国杰出的剧作家、诗人和思想家,一生中创作了包括四大悲剧和四大喜剧在内的几十部戏剧。在这些作品中,莎士比亚对情感(affect)的刻
为了提高战斗部在不同弹目交会距离下的毁伤概率,模拟了一种平面和凸面交错布置的异面棱柱战斗部结构,分析了不同面上所形成破片束的飞散形态和威力参数。研究结果表明,该结
右手螺旋定则、右手定则、左手定则是电磁学中的三个重要定则,笔者在教学中发现学生对这三个定则的应用常常会混淆,为了更好的区分和理解这三个定则,总结出了一些巧记方法。
近年来蛋白靶向降解(PROTAC)技术作为一种新的治疗手段在抗肿瘤药物领域中得到了广泛的研究。PROTAC是一种双功能的小分子化合物,可以将靶蛋白与E3泛素连接酶连接形成三元复
连续动力系统,离散动力系统和脉冲动力系统是三大主要的动力系统。正是由于脉冲动力系统的解在两脉冲时刻间具有连续性,而在脉冲时刻处却具有间断性,使得脉冲动力系统的理论
目的:吸烟是影响健康的一个重要因素,可显著增加心脏病、肿瘤、急慢性呼吸道感染的发病率。根据我国流行病学调查数据显示:虽然人们的吸烟率已经出现了下降趋势,但被动吸烟状况没
叙述荆门电厂GGAJ02S-08/72kV型静电除尘用高压硅整流装置的改进及改进前后的运行情况。
无机氧化物功能材料广泛地应用于各种领域。将无机氧化物构建为具有低密度,高比表面积的空心球结构材料可以极大的提高无机氧化物材料的各项性质。目前,各类无机微纳空心球已