论文部分内容阅读
近几十年来,由于通信、空间科学、地球观测事业迅猛发展,对高精度的网状展开天线的需求越来越迫切,所以大型空间网状展开天线及其反射面精度控制技术就成为大型空间天线研究的一个热门课题而受到世界各宇航公司和研究单位的关注。而振动是引起天线反射面精度下降的一个及其重要的原因。因此,必须对其振动进行控制。智能材料与结构的发展,为反射面振动控制问题提供了新的思路,显示出特有的生命力。因而,本文主要结合智能结构的新思想,提出了基于光纤传感器、压电作动器及H_∞混合灵敏度控制器的大型可展开天线反射面在轨振动控制的智能结构,并围绕其关键技术进行深入研究。主要工作如下:(1)在全面综合当前智能材料结构研究发展成果的基础上,针对可展开天线反射面在轨振动控制问题,提出了采用光纤传感器/压电作动器/H_∞控制器可展开天线纵向调整索反射面精度控制智能结构的新方案,并对其关键技术进行了设计。(2)通过对索网结构几何非线性的分析研究,建立了某周边桁架式可展开天线结构的非线性静力分析与动力分析计算模型,将其应用于实际天线结构的计算中,取得了合理的计算结果。(3)应用压电方程和弹性力学方程建立了含压电作动器的可展开天线智能结构机电耦合有限元方程及动力方程,从而,建立了含智能结构振动控制的模型。针对受控对象模型不确定性和受扰动的特点,采用H∞混合灵敏度控制方法设计控制器。(4)针对可展开天线中压电作动器的位置优化问题,提出了一种较为简便且有效的位置优化方法。该方法既考虑了外部激励力对候选单元位置处的响应的大小和应变能的大小,也考虑了可能配制智能结构的候选位置处作动力对响应的敏感程度。并把三者结合在一起,得到每一个单元的总的可控度指标,这个指标的最大值决定了智能结构的位置。并通过控制器仿真进行了验证。(5)针对可展开天线反射面振动控制智能结构中的测试问题,采用先进的光纤法珀(英文简写为F-P)传感器的传感测试技术。从光纤F-P传感器的理论模型出发,对光纤F-P传感器的应变传感机理进行了较系统的理论分析与研究。研究了使用此传感测试系统实现纵向调整索预应力及振动监测的理论和方法。设计了采用光纤法珀传感器可展开天线纵向调整索传感测试系统,建立了多模光纤传感测试系统中传感器的信噪比理论模型;完成了该测试系统的信号采集与处理部分的软硬件设计;最后对所设计的传感测试系统进行了试验标定。结果表明:该测试系统具有测试精度和灵敏度高、测试系统简单、测试性能稳定等优点。所设计的测试系统已初步具备了实验室使用的条件。(6)以某大型可展开天线模型为例,采用所设计的压电作动器/H_∞控制器可展开天线纵向调整索反射面精度控制智能结构系统进行了控制器仿真。仿真结果表明,所设计的控制系统能够使振动在极短的时间内得到有效抑制,且采用H_∞控制理论设计的控制器在笔者提出的传感器/作动器位置优化处控制效果最好。从而证明了本文设计的控制器的有效性和位置优化理论的正确性。采用所设计的光纤传感测试系统进行纵向调整索的静、动态特性测试,并与传统测试方法及理论值进行了对比。结果表明,基于光纤传感器纵向调整索智能结构能够准确测得调整索预应力、固有频率值及振型。