【摘 要】
:
随着能源危机和环境污染问题的日趋严重,天然气因探明储量大、CO2排放低等优点受到广泛关注。柴油/天然气双燃料发动机由于其在热效率、低有害排放和燃烧可控性等方面的优势逐渐成为天然气发动机领域的研究热点。目前,柴油/天然气双燃料发动机在大负荷工况下的燃烧放热速率控制是热效率提升的关键。因此,开展柴油/天然气双燃料发动机燃烧机理研究,提出大负荷燃烧协同优化控制,对于开发高热效率、高可靠性柴油/天然气双燃
论文部分内容阅读
随着能源危机和环境污染问题的日趋严重,天然气因探明储量大、CO2排放低等优点受到广泛关注。柴油/天然气双燃料发动机由于其在热效率、低有害排放和燃烧可控性等方面的优势逐渐成为天然气发动机领域的研究热点。目前,柴油/天然气双燃料发动机在大负荷工况下的燃烧放热速率控制是热效率提升的关键。因此,开展柴油/天然气双燃料发动机燃烧机理研究,提出大负荷燃烧协同优化控制,对于开发高热效率、高可靠性柴油/天然气双燃料发动机有重要的工程意义。本文首先利用CONVERGE搭建了天然气气道喷射双燃料发动机三维数值模型,在低速大负荷工况利用模型研究了压缩比对缸内燃烧过程和IMEP等的影响,并在此基础上探究了柴油单次喷射策略与两次喷射策略改善燃烧过程的潜力。结果表明:压缩比从16.8降低到14.8可有效降低最大压升率,IMEP有所下降但不大;基于压缩比14.8燃烧室,采用柴油单次喷射策略时,提高喷射压力可有效改善高天然气替代比例条件下的指示热效率,对喷射压力和喷射时刻的协同控制可实现85%的天然气替代比例和48.1%的指示热效率;两次喷射策略能提高对燃烧过程的控制性,可将天然气替代比例提高到90%,对预喷时刻和预喷比例的协同控制可将指示热效率提高到48.4%。基于标定模型进一步搭建了天然气缸内直喷双燃料发动机模型,利用模型研究了天然气后喷喷射策略(先喷柴油引燃+后喷天然气)、天然气部分预喷喷射策略(先喷部分天然气预混+柴油中间喷射引燃+后喷天然气)改善燃烧过程的潜力,并对四种喷射策略进行了混合气分布特性分析。结果表明:当天然气后喷喷射策略的柴油与天然气喷射时刻相距较近或者较远时,均会提高最大压升率,对喷射时刻和天然气喷射压力的协同控制可实现48.15%的指示热效率;采用天然气部分预喷喷射策略时,推迟天然气预喷时刻和提高天燃气预喷比例均会提高最大压升率,对天然气预喷时刻、预喷比例和天然气后喷时刻的协同控制可实现49.38%的指示热效率;柴油两次喷射策略相比单次喷射策略提高了主喷时刻的混合气分层度,进而提高了对燃烧过程的控制性;天然气后喷喷射策略的混合气分层度过高,影响了天然气与空气的混合速率,指示热效率的改善受限;天然气部分预喷喷射策略的混合气分层度在柴油单次喷射策略、两次喷射策略与天然气后喷喷射策略之间,有利于提高指示热效率和降低最大压升率。综上,通过控制天然气与柴油的喷射方式来控制混合气浓度和活性分层,可有效控制燃烧放热速率,进而在抑制压升率和爆压的同时改善热效率。
其他文献
随着智能化、网联化技术的快速发展,开发碾压机的无人驾驶技术在提高碾压效率和生产力等方面显得日益重要。然而由于无人驾驶碾压机碾压过程中高频率的振动和大量的粉尘会对碾压机的整个电子电气系统造成影响,使得无人驾驶关键部位易发生故障和失控,进而导致安全问题。因此开发一种快速、准确的无人驾驶碾压机故障诊断及故障处理机制是当前迫切的工程需求。基于此目的本文主要做了如下的研究:首先开发了一种基于混合模型的无人驾
自燃推进剂火箭发动机依赖燃料与氧化剂液相碰撞自燃完成点火过程,推进剂之间的物理混合将直接影响发动机的点火稳定性。本文针对自燃推进剂燃料和氧化剂普遍存在较大表面张力差异的特征,采用高速摄影、数值模拟与理论分析结合的方法,研究了马拉高尼效应对液滴-液面碰撞混合的影响。在液滴表面张力高于液面(1-σ*)>0的情况下,研究发现马拉高尼流动倾向于携带液池流体包裹液滴,液面上方可能发生两次破碎,液面下方出现了
微尺度燃烧器的尺寸通常在毫米级别,特征尺寸的减小导致火焰容易发生淬熄,火焰稳定性大大下降。填充多孔介质可以加强微尺度燃烧器内的热循环,有效提升火焰传播速度,增强火焰稳定性。研究发现:与常规尺度燃烧器不同,多孔介质微尺度燃烧器内火焰驻定对应的是一个较宽的工况范围,而非单一的值。然而目前关于多孔介质微燃烧器内火焰驻定机理的研究尚有不足。本文搭建了氢气/空气预混气在部分填充多孔介质微通道内燃烧的物理模型
汽油压燃是一种高效清洁的燃烧方式,但其面临着低负荷燃烧稳定性差的瓶颈难题,关键原因在于汽油燃料活性低、低负荷热力学条件差,燃烧对边界条件非常敏感。火花点火可以大大降低汽油压燃低负荷燃烧对缸内热力学状态的严重依赖,为汽油压燃低负荷稳定燃烧的实现提供了一个潜在的可行途径。因此,本文基于重型发动机开展燃烧边界条件对火花辅助汽油压燃低负荷影响的试验研究,探索实现重型发动机低负荷火花辅助汽油压燃稳定、高效、
无人驾驶公交车由于其特殊的社会服务功能,以及复杂的道路运行工况,因此对于超车过程的安全性、舒适性及规划的合理性,提出了更高的功能要求。本文针对无人驾驶公交车的超车行为提出基于TOPSIS的主客观赋权的测评体系,进而利用粒子群优化算法得到超车行为的优化控制策略。具体研究内容如下:首先,利用SCANe R studio仿真软件搭建了无人驾驶公交车虚拟仿真平台,为超车行为的全历程测试和验证提供平台支撑。
为应对能源危机与环境污染的挑战,内燃机朝着小型强化的方向发展,这使内燃机的热负荷增加,爆震现象更容易产生,导致高频压力震荡,降低发动机可靠性。爆震成为了制约高强化发动机进一步提升热效率的瓶颈。基于光学实验的结果,目前普遍认为爆震是由末端气体自燃引起的。本文基于大分子燃料,在定容燃烧弹(CVCB)实验平台上开展了针对末端气体自燃及爆轰发生机理的研究,并探究了末端自燃的影响因素,为进一步揭示爆震产生机
纳秒脉冲等离子体点火是扩大汽油机稀燃极限和提高其热效率的一种方式。为了开展汽油机高压空气环境下纳秒脉冲放电特性研究,本文基于磁脉冲压缩原理和脉冲变压器技术,并利用Pspice软件仿真研究了纳秒脉冲点火系统中元件参数对点火系统次级输出参数的影响。在此基础上,开发了一套纳秒脉冲点火系统,并借助于纹影成像和高速摄影方法,在定容弹内研究了不同试验条件下,纳秒脉冲等离子体放电发展过程中的电和图像信息。纳秒脉
气缸套穴蚀是柴油机常见故障形式之一,对各种缸径柴油机的运维与设计工作带来了极大的不便,也是柴油机故障诊断研究中的难点。因此,探明柴油机气缸套穴蚀机理对于柴油机智能运维和可靠性设计有重要意义。以某直列六缸柴油机为研究对象,进行整机流动数值模拟和单缸冷却液空化数值模拟,研究缸内冷却液流场特性,预测穴蚀发生位置;开展缸套近壁面空泡溃灭仿真,通过宏观和介观仿真结合的思路,揭示缸套穴蚀机理,并探究缸套穴蚀的
点燃式活塞发动机因具有燃油经济性好、热效率高、维护方便、功重比高、等特点,逐渐成为中小型无人机的主流动力装置。航空汽油有雾化容易、冷启动性能好、挥发性好等优点,但由于其遇明火易着导致航空汽油在运输、储存和使用上存在很大的危险性,以航空煤油作为燃料逐渐成为点燃式航空活塞发动机发展趋势。航空煤油密度大、燃油雾化困难,辛烷值低,大负荷工况下容易发生爆震。因此,本文通过空气辅助航空煤油促进燃油雾化,进行航
增程式混合动力电推进系统能够有效解决纯电动无人机续航里程受限、飞行时间较短的问题,同时具有纯电动系统运行平稳、动力响应快速的优点。如何提高增程式混合动力系统的能量利用效率,充分发挥系统的续航优势是研究的热点问题之一。为提高无人机工作时间,降低系统运行过程中的燃油消耗,本文设计了基于双层模糊控制的能源管理策略并使用遗传算法对控制参数进行优化。双层模糊控制器分为发电功率模糊控制器和系统转速模糊控制器。