基于特征增强和数据关联的多目标跟踪方法研究

来源 :南京邮电大学 | 被引量 : 0次 | 上传用户:hl830320
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着物联网的普及和5G应用的发展,越来越多的图像数据被产生和收集。为了有效地对这些数据进行处理,研究者们对计算机视觉下的图像分类、目标检测、图像分割和目标跟踪等各个子领域都进行了深入研究与探索。多目标跟踪是从连续的图像帧中得出所有感兴趣目标的轨迹,其广泛应用在自动驾驶、人机交互和机器人视觉导航,近年来受到越来越多的关注。由于多目标跟踪目标数量的随机性、跟踪背景的复杂性、目标间的遮挡等多种因素的干扰,设计一个准确、高效的多目标跟踪算法仍然是一个具有挑战性的任务。本文为了改进多目标跟踪算法的准确率,围绕多目标跟踪中特征提取和数据关联步骤展开了研究,提出一种基于特征增强和数据关联的多目标跟踪算法,有效的改进了漏检、误检和遮挡造成的错误关联问题。主要研究内容如下:(1)针对目标的漏检和误检的问题,提出了一种基于运动显著特征和互相关注意力的多目标跟踪算法。首先采用运动增强模块,利用相邻帧特征的时间差分运算来增强通道中的运动相关特征,抑制无关信息。然后采用互相关注意力模块,将检测任务和重新识别任务解耦以减少这两个任务之间的竞争。最后将目标检测、特征提取和数据关联统一到一个框架中,实现了端到端的优化。(2)针对遮挡导致的目标轨迹中断和轨迹ID变换的问题,提出了基于二次关联低分检测框的多目标跟踪算法。通过在提出使用运动增强和互相关注意力的方式的基础上,使用二次数据关联的方法。该方法不同于以往只保留高分检测框的做法,而是将高分框和低分框分开处理,利用低分检测框和轨迹之间的相似性,发现真正的目标,实现在遮挡情况下的正确关联。在MOT Challenge上提供的MOT 16/17数据集、MOT20数据集上实验,采用了 8个(MOTA、MOTP、IDF1、MT、ML、FP、FN、IDs)标准评估指标来全面衡量算法。在MOT17数据集上的实验结果显示,运动增强模块和互相关注意力模块的应用将MOTA从66.6%提升至67.5%,FP减少了 12.1%。在此基础上叠加二次数据关联,最终的MOTA为68.7%。实验结果表明,改进后的链式跟踪算法可以增加相邻两帧之间的关联性,能够有效的解决遮挡问题,以提高多目标跟踪算法的准确性。
其他文献
全世界每年因为线虫侵染和寄生农作物经济损失巨大,传统的物理和化学方式防治线虫具有许多局限性。随着生物研究领域的快速崛起和发展,线虫的生物防治逐渐具有可能性,其中杀线虫真菌成为最具有潜力的生防制剂之一。而捕食线虫真菌是一种主要的杀线虫真菌,利用线虫诱导或在特定环境下可以由腐生转化为寄生,从而形成了各种捕食器官如三维菌网、收缩环、粘性分枝等来捕获并侵染线虫,从而达到防治线虫的目的。本论文利用RNA-s
学位
总所众知,电力变压器在整个电力系统占据举足轻重的地位。目前国内大型电力变压器主要为油浸式,其内部在某些情况下可能会有空气进入,例如在一些生产出厂或者高负荷运行的场合,当电力变压器中的绝缘油与一些绝缘材料长时间与空气接触后,可能会发生劣化现象,造成产生故障的隐患,所以难免会出现一些故障。当故障发生时,电力变压器绝缘油中将会产出一些故障气体,然而不同的故障气体往往对应着不同的故障类型,且不同的故障之间
学位
近年来,图神经网络(Graph Neural Networks,GNN)已成功的广泛应用于生物医药、系统建模、推荐系统、文本分类、社交网络等当今时代重要的各项领域。随着人工智能应用的不断发展,图结构数据库的规模也越来越大,如何对大规模图结构数据库进行有效训练,是图神经网络发展面临的重要挑战。本文首先采用随机游走图采样算法以随机游走的方式形成多批次子图,以解决大规模图结构数据库的训练复杂度问题,同时
学位
作为人机交流的桥梁,基于脑电图(EEG)的脑机接口(BCI)旨在将大脑活动直接解码为不同的控制命令,该技术在多个领域大放异彩。近年来过劳死报道频出,工程施工过程中因疲劳施工而导致的死亡人数逐年上涨,因此找到一种高效、便捷的疲劳检测方法成为工程施工安全研究的重点方向。同时,在医疗康复领域,脑电信号也有广泛应用。比如医学康复治疗瘫痪患者和脑控机器人中,通过解码脑电信号,可以分析其中的运动想象信息,实现
学位
由于照明强度以及数字设备动态范围的约束,拍摄的照片通常会出现能见度低、对比度不高和噪声放大等退化现象,这种低质量图像不仅视觉效果不佳,而且难以支持后期高级的计算机视觉任务。针对以上问题,本文在传统方向,基于Retinex模型的局限之处,提出了基于Retinex的纹理结构感知的非均匀光照图像增强算法;在深度学习方向,基于Retinex-Net网络模型存在的色彩保真度低以及放大噪声等缺点,提出了改进R
学位
表格结构识别是文档识别(Document Recognition)领域中一项基础且具有挑战的任务,目的是获取单元格的结构信息。最近,深度学习已经成为解决表格结构识别的主流方法,通过训练神经网络得到最佳的拟合模型。基于深度学习的表格结构识别有两种主要算法,分别是识别表格行与列算法和识别表格框线算法。识别表格行与列算法通过获取表格的行与列来识别表格结构,现有的有效方案是使用语义分割(Semantic
学位
图像增强是计算机视觉及图像处理领域的一项重要研究内容。由于成像所处环境的不同,在夜间、背光、雾霾以及水下等条件下由图像采集设备采集到的图像通常为不同程度损坏的低质量图像。对低质量图像进行增强处理可以提升图像的整体色彩,凸显图像中物体的细节特征,以此提高图像质量,为后续高级视觉任务提供有效的数据质量保证。本文主要针对自然场景低照度图像及水下场景降质图像进行研究,根据这两类低质量图像的不同特征,开展的
学位
雷达信号识别技术在军用和民用领域应用广泛,尤其在军事场景中,在现代电子对抗中发挥着重要的作用,是非常具有挑战性的问题。在深度学习技术快速发展的同时,基于深度学习的雷达信号识别技术也取得了非常大的进展,相对于传统的识别方法,在整体性能上有很大的提升,但是在识别精度不断提升的同时,神经网络的深度不断加深,参数量也更加冗余,导致对硬件机器的算力要求日益增大,难以在边缘终端设备上应用,所以设计出高效精简的
学位
在量子力学基本原理保证下,量子密钥分发使合法用户Alice和Bob能够在Eve窃听情形下获取安全密钥,其安全性已得到严格证明,且目前已成为可实用的一种量子技术。光子是量子密钥分发过程中的一种常见的信息载体,其在分发过程中由于信道噪声会丢失从而导致量子密钥分发的安全密钥率存在着上界,该上界也被称为PLOB界。然而,双场量子密钥分发(Twin-Field Quantum Key Distributio
学位
自动调制识别是非合作通信系统中非常关键的一种技术,被广泛应用在军用和民用等诸多领域,具体是在部分或全部通信参数未知的情况下,对接收信号的调制类型进行分类识别,从而有助于后续信号解调等相关信号处理工作,最终提高通信系统的性能。随着日益复杂多变的通信场景,以往很多研究中假设的高斯分布加性噪声已经不再满足实际信道环境的准确描述。实际中,由于飞机、火车等现代交通工具的高速移动,在其中的用户进行通信时会导致
学位