论文部分内容阅读
智能电网是对于传统电网的改造和升级。借助无线传感网,智能电网可以有效改善传统电网在供能效率、能源经济性、能源安全以及环境友好等方面的不足。受覆盖范围和传输速率的制约,无线传感网主要服务于电网的配电环节和用电环节,支持高级计量基础设施(Advanced Metering Infrastructure,AMI)、需求侧响应(Demand Response,DR)和配电自动化(Distribution Automation,DA)等应用。由于无线传感网本身资源受限,而智能电网具体应用的业务特点和通信要求多样,因此在实际部署前往往需要进行理论分析。
目前针对智能电网的无线传感网理论研究工作存在以下局限和不足:1)大多数传统无线传感网理论模型及优化算法没有明确应用场景,且忽视无线传感器设备的实际性能参数,导致研究结果不适用于智能电网应用场景;2)智能电网中新应用的加入以及新旧设备的替换会引起无线传感网规模和负载的变化,而传统信道接入参数优化算法无法有效分辨数据包送达率的变化是由信道接入的随机性引起还是源于无线传感网负载的变化,因此无法应对智能电网应用场景中的无线传感网负载变化问题。3)传统针对智能电网的无线传感网理论模型往往假设节点拥有稳定负载状态,而智能电网更多应用场景中的业务为周期性生成,负载状态不稳定,会导致传统理论模型无法有效分析。此外,大多数针对DR方案的传统理论模型以及优化算法将用电器的效用函数假设为凸函数,保证所构建优化问题为标准凸优化问题。实际生活中用电器的效用函数不全为凸函数,因此这些传统理论模型并不合理,相应优化算法也不能获得实际最优解。
针对上述不足,本文考虑智能电网具体应用的业务特点及通信要求,结合无线传感网通信标准及设备的实际功能参数,对面向智能电网业务与应用的无线传感网展开若干理论研究。本论文的主要工作和创新点如下:
1)为探究无线传感网对AMI系统应用的适用性,以IEEE802.15.4标准为基础,提出面向家庭区域网络(Home Area Network,HAN)中AMI系统应用的无线传感网物理层和媒体接入控制(Medium Access Control,MAC)层理论模型。物理层模型严格参考实际无线传感器模块的功能参数,建立了考虑调制方式、发送功率级数、传输距离、数据包大小以及握手机制的数据包发送成功率计算公式。MAC层模型根据AMI系统定时检测业务特点,将任意时刻信道内数据包的生成率近似为泊松分布,并由此提出任意时刻节点进行信道空闲状态评估(Channel Clear Assessment,CCA)操作的概率以及成功率的计算公式。模型在简化计算复杂度的同时提升了对无线传感网通信性能和能耗情况的计算准确度,较传统无线传感网模型可以为AMI系统应用提供更客观的无线传感网配置参考。通过分析确定最大退避次数和最小退避指数是AMI系统应用场景中更适合优化的参数,为后续优化面向AMI系统应用的无线传感网奠定理论基础。
2)针对已部署无线传感网需要支持更高监测频率的电网业务并适应新旧电网设备替换的情况,为提高无线传感器节点的通信性能以及在无线传感网规模和负载发生变化时的鲁棒性,提出一种用于优化信道接入机制的分布式自适应参数调整算法。所提出算法基于AMI系统应用场景中任意时刻信道内数据包生成率近似为泊松分布的研究结果,利用独立泊松分布之和仍为泊松分布的性质,以节点自身参数以及信道检测和数据包发送的历史信息为参考,对周围网络是否发生变化进行判断,进而对信道接入机制关键参数进行及时调整。相较于传统无线传感网参数优化算法,所提出算法的参数调整方式更稳健,使无线传感网在可靠性、有效性和能量效率等方面表现更稳定,使无线传感器节点具有更好的鲁棒性。
3)针对配电线路故障检测与定位应用中无线传感器节点的信道接入行为,根据应用中高频采样的业务特点,建立了节点数据包生成周期与发送时长接近时的信道接入理论模型。模型兼顾单次信道空闲检测模式和双重信道空闲检测模式,利用离散时间马尔可夫过程和离散傅立叶变换,推导出在信道和节点两个角度下CCA操作出现的概率及成功概率的计算公式,有效刻画了节点数据包生成周期与发送时长接近时的信道接入行为以及负载状态,可以准确计算配电线路实时监测与定位应用场景中无线传感器节点个体和无线传感网整体的通信性能以及能耗情况。通过分析确定双重信道空间检测模式更适用于所考虑应用场景。利用退避等待过程的时间分布特点,提出一种近似计算无线传感网平均传输时延的方法,可以有效判断所配置无线传感网是否满足配电线路故障检测定位应用的时延要求。
4)针对DR方案中提高电网系统总用电(供电)福利的设计目标,为分析电网系统主要环节用电(供电)行为以及相应的成本和收益,建立了计算电网系统总用电(供电)福利的模型。所建立模型考虑用户生活习惯以及用电器的功耗特性,借助效用函数的概念,将不同用电设备在不同时段工作时消耗的电能与所提供福利之间的关系进行公式化表达。基于所提出模型,结合用电限制因素,构建了带有电量约束的以电网总福利最大化为目标的优化问题。利用拉格朗日乘数法,提出用于优化电网总福利的分布式负载调度算法,可以准确计算用电器最佳耗电量,有效提高电网总福利。提出一种以电价信息为参照的储能设备充电速率调整策略,在有效提高电网总福利的同时减少了能源浪费。
目前针对智能电网的无线传感网理论研究工作存在以下局限和不足:1)大多数传统无线传感网理论模型及优化算法没有明确应用场景,且忽视无线传感器设备的实际性能参数,导致研究结果不适用于智能电网应用场景;2)智能电网中新应用的加入以及新旧设备的替换会引起无线传感网规模和负载的变化,而传统信道接入参数优化算法无法有效分辨数据包送达率的变化是由信道接入的随机性引起还是源于无线传感网负载的变化,因此无法应对智能电网应用场景中的无线传感网负载变化问题。3)传统针对智能电网的无线传感网理论模型往往假设节点拥有稳定负载状态,而智能电网更多应用场景中的业务为周期性生成,负载状态不稳定,会导致传统理论模型无法有效分析。此外,大多数针对DR方案的传统理论模型以及优化算法将用电器的效用函数假设为凸函数,保证所构建优化问题为标准凸优化问题。实际生活中用电器的效用函数不全为凸函数,因此这些传统理论模型并不合理,相应优化算法也不能获得实际最优解。
针对上述不足,本文考虑智能电网具体应用的业务特点及通信要求,结合无线传感网通信标准及设备的实际功能参数,对面向智能电网业务与应用的无线传感网展开若干理论研究。本论文的主要工作和创新点如下:
1)为探究无线传感网对AMI系统应用的适用性,以IEEE802.15.4标准为基础,提出面向家庭区域网络(Home Area Network,HAN)中AMI系统应用的无线传感网物理层和媒体接入控制(Medium Access Control,MAC)层理论模型。物理层模型严格参考实际无线传感器模块的功能参数,建立了考虑调制方式、发送功率级数、传输距离、数据包大小以及握手机制的数据包发送成功率计算公式。MAC层模型根据AMI系统定时检测业务特点,将任意时刻信道内数据包的生成率近似为泊松分布,并由此提出任意时刻节点进行信道空闲状态评估(Channel Clear Assessment,CCA)操作的概率以及成功率的计算公式。模型在简化计算复杂度的同时提升了对无线传感网通信性能和能耗情况的计算准确度,较传统无线传感网模型可以为AMI系统应用提供更客观的无线传感网配置参考。通过分析确定最大退避次数和最小退避指数是AMI系统应用场景中更适合优化的参数,为后续优化面向AMI系统应用的无线传感网奠定理论基础。
2)针对已部署无线传感网需要支持更高监测频率的电网业务并适应新旧电网设备替换的情况,为提高无线传感器节点的通信性能以及在无线传感网规模和负载发生变化时的鲁棒性,提出一种用于优化信道接入机制的分布式自适应参数调整算法。所提出算法基于AMI系统应用场景中任意时刻信道内数据包生成率近似为泊松分布的研究结果,利用独立泊松分布之和仍为泊松分布的性质,以节点自身参数以及信道检测和数据包发送的历史信息为参考,对周围网络是否发生变化进行判断,进而对信道接入机制关键参数进行及时调整。相较于传统无线传感网参数优化算法,所提出算法的参数调整方式更稳健,使无线传感网在可靠性、有效性和能量效率等方面表现更稳定,使无线传感器节点具有更好的鲁棒性。
3)针对配电线路故障检测与定位应用中无线传感器节点的信道接入行为,根据应用中高频采样的业务特点,建立了节点数据包生成周期与发送时长接近时的信道接入理论模型。模型兼顾单次信道空闲检测模式和双重信道空闲检测模式,利用离散时间马尔可夫过程和离散傅立叶变换,推导出在信道和节点两个角度下CCA操作出现的概率及成功概率的计算公式,有效刻画了节点数据包生成周期与发送时长接近时的信道接入行为以及负载状态,可以准确计算配电线路实时监测与定位应用场景中无线传感器节点个体和无线传感网整体的通信性能以及能耗情况。通过分析确定双重信道空间检测模式更适用于所考虑应用场景。利用退避等待过程的时间分布特点,提出一种近似计算无线传感网平均传输时延的方法,可以有效判断所配置无线传感网是否满足配电线路故障检测定位应用的时延要求。
4)针对DR方案中提高电网系统总用电(供电)福利的设计目标,为分析电网系统主要环节用电(供电)行为以及相应的成本和收益,建立了计算电网系统总用电(供电)福利的模型。所建立模型考虑用户生活习惯以及用电器的功耗特性,借助效用函数的概念,将不同用电设备在不同时段工作时消耗的电能与所提供福利之间的关系进行公式化表达。基于所提出模型,结合用电限制因素,构建了带有电量约束的以电网总福利最大化为目标的优化问题。利用拉格朗日乘数法,提出用于优化电网总福利的分布式负载调度算法,可以准确计算用电器最佳耗电量,有效提高电网总福利。提出一种以电价信息为参照的储能设备充电速率调整策略,在有效提高电网总福利的同时减少了能源浪费。