几类具有特定条件波方程的能量指数衰减

来源 :山西大学 | 被引量 : 0次 | 上传用户:alfred0612
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
如今,各学科之间的交叉性和互融性越来越明显,数学作为自然科学的基础也不例外,在物理以及工程方面逐渐起着支柱性学科的作用.微分方程作为数学的一大领域,其解的存在性和唯一性决定了现实生活中的问题是否可以得到解决,进一步而言,其解的性能则影响了实际问题的方方面面.本文主要以波方程为研究对象,以实际问题为背景,在众多学者研究结论的铺垫下,主要针对三类特定条件下的波方程的衰减情况作了进一步的研究.   第一章作为本文的引言,主要对正文内容作了简单性介绍.   第二章研究了耦合波方程的指数稳定性.在Najafi.等学者对耦合振动波方程系统的一般微分方程能量指数衰减探讨的基础上,对如下方程作了改进:{utt-c21△u-l(u-)=0在Ω×(0,∞),vtt-c22△v-l(v-u)=0在Ω×(0,∞),u(x,0)=u0()∈H1(Ωu), ut(x,0)=u1()∈L2(Ωu),(x,0)=v0(x)∈H1(Ωu), vt(x,0)=v1(x)∈L2(Ω),其中Ωu,Ωv,关于矢量场r(x)=[r1(x),…,rn(x)]∈C2((Q)u∪(Q)u)满足下面的边值条件:{Γu1={x∈Γu:r(x)·v(x)>0},Γu0={x∈Γu:r(x)·v(x)≤0},Γv1={x∈Γu:r(x)·v(x)>0},Γv0={x∈Γu:r(x)·v(x)≤0},v(x)是外单位法向量,其中x∈Γi,i=0,1.则边界条件可描述如下:{u(x,t)=0,在Γu0×(0,∞),c12(a)u/(a)v=-β1(x)(r·v)ut,在Γu1×(0,∞),v(x,t)=0,在Γv0×(0,∞), c22(a)u/(a)v=-β2(x)(r·v)v2,在Γv1×(0,∞),   本文对上述并联(两个)振动系统增加阻尼项后,探讨了如下方程的能量衰减情况:{utt-c21△u=l(—u)+β(vt-ut),在Ω×(0,∞),vtt-c22△v=l(u-)+β(ut-vt),在Ω×(0,∞),u(x,0)=u0∈H1(Ωu), ut(x,0)=u1∈L2(Ωu),v(x,0)=0∈H1(Ωu), vt(x,0)=1∈L2(Ω),其中Ωu,Ωuv,关于矢量场r(x)=[r1(x),…,rn(x)]∈C2((Ω)u∪(Ω)v)满足下面的边值条件:{Γu1={x∈Γu:r(x)·v(x)>0},Γu0={x∈Γu:r(x)·v(x)≤0},Γv1={x∈Γu:r(x)·v(x)>0},Γv0={x∈Γu:r(x)·v(x)≤0},v(x)是外单位法向量,其中x∈Γi,i=0,1处的单位外法向量,则边界条件可描述如下:{u(x,t)=0,在Γu0×(0,∞),c12(a)u/(a)v=-β1(x)(r·v)ut,在Γu1×(0,∞),(x,t)=0,在Γv0×(0,∞),c22(a)u/(a)v=-β2(x)(r·v)vt,在Γv1×(0,∞),这一问题会在隔离物体外部干扰方面有潜在的应用.   第三章主要研究了柔性空间结构中带阻尼波方程.在Gorain,Boso,Horn等对n维-Kirchhoff波方程探究的基础上,即:{utt+2ut=(a2+b∫Ω|▽u|2dx)△u,Ω×R+u=0Γ0×R+,(a)u/(a)v=0,Γ1×R+u(,0)=u0(x), ut(x,0)=u1(x) x∈Ω对上述方程做了推广.本文在在混合边界的情况下,在上述系统方程边界的一部分上施加了个高速反馈控制后,即{utt+2ut=(a2+b∫Ω|▽u|2dx)△u,Ω×R+u=0Γ0×R+,(a)u/(a)v=-(m·v)ut,Γ1×R+u(x,0)=u0(x), ut(x,0)=u1(x)x∈Ω证明了系统是一致稳定的,且给出了一致能量衰减估计式.   第四章是对一类带阻尼波方程的稳定性做了研究.Chen,Lagnese,Lasiecka,Lions等已针对非阻尼波方程:{utt=△uΩ×R+u=0Γ0×R+(a)u/(a)v=-b(x)ut,Γ1×R+u(x,0)=u0(x)ut(x,0)=u1(x)x∈Ω给出了估计式E(t)≤Me-βtE(0)(∨)t>0.本章在上述方程左边增加了内部阻尼之后,即:{utt+δut=△uΩ×R+u=0Γ0×R+(a)u/(a)v=0,Γ1×R+u(x,0)=u0(x) ut(x,0)=u1(x) x∈Ω证明了系统一致指数衰减,给出了能量衰减估计式.
其他文献
学位
对于成分数据的处理往往是进行对数比变换,这时,如果数据中含有零点或是近似零点,变换后就会出现负无穷的数据.因此,对于成分数据中零点或是近似零点的处理就成为成分数据分析中
水分利用效率(WUE)能够反映碳水循环的耦合状况,同时也是评价陆地植被对气候变化响应的一个有效特征量。本研究以水分控制试验(2008—2009年,锦州)和大田作物试验(1990—2010
本文主要研究了具有(H)(m)-型核的奇异积分算子及其交换子的有界性.本文共分四章.   在第一章中,我们介绍了具有(H)(m)-型核的奇异积分算子及其交换子的研究背景和主要结果
摘 要:近年来,随着安全标准化建设的不断推进,加油站安全标准化建设中凸显的问题越来越对,本文主要从加油站安全标准化现状分析、应对措施两个方面进行探讨,为加油站安全标准化建设提出一些浅显的意见。  关键词:加油站安全标准化 现状分析 应对措施  一、引言  近年来,随着中国改革开放的不断深入,人民生活水平也在不断的提高,成品油销售对于工业、农业以及生活的影响也在不断加强。加油站作为两桶油主要的对外窗
本文研究了计算代数在曲面造型中的应用,主要包括两部分内容:计算代数在曲线造型中的应用研究和计算代数在曲面造型中的应用研究。首先,文章研究了计算代数在曲线造型中的应用。
本文研究了几类超二次二阶哈密顿系统周期解的存在性.本文共分四章:   第一章介绍了哈密顿系统周期解问题的研究背景及相关研究成果,并给出了本文所得到的主要结论以及证明
本文通过对荣华二采区10
近年来,以SIFT为代表的局部描述子取得了很大的成功,极大地推动了计算机视觉相关领域的研究进展。目前,局部描述子匹配已经逐渐成为了宽基线匹配、物体识别、图像分类、图像
股票市场是一个复杂的非线性动态系统,利用传统的时间序列预测技术很难揭示其内在的规律。支持向量机(Support Vector Machine,简称SVM)是借助优化方法解决数据挖掘中若干问题