论文部分内容阅读
作为移动通信的空口技术方案之一,联合低密度奇偶校验码的比特交织编码调制(LDPC-BICM,Low-Density Parity-Check Coded Bit-interleaved Coded Modulation)系统凭借强大的纠错能力、逼近香农限的传输性能以及高效灵活的方案实现等优势而备受关注。目前,LDPC-BICM亟待解决几种典型应用场景带来的严峻挑战,诸如异构系统的脉冲干扰、模拟前端的非线性失真以及多用户引起的同频干扰等。上述典型应用场景的干扰、失真等非理想因素将引起符号间干扰或者子载波间干扰,导致LDPC-BICM接收方案的最大后验(MAP,Maximum a posteriori)解调器在计算对数似然比(LLR, Likelihood Ratio)信息过程中产生严重的失配现象,造成解调译码性能的恶化。
为应对多元化业务场景和差异化性能需求的挑战,LDPC-BICM系统兼顾传输有效性和系统可靠性的同时,迫切需要借助人工智能领域的深度学习手段赋予接收方案感知能力和决策能力,最终达到增强典型应用场景中解调译码性能的目标。围绕深度学习辅助的LDPC-BICM接收方案,论文的核心内容和研究成果主要包括:
1)针对异构干扰场景中的民用航空移动宽带通信系统,论文提出基于高斯混合模型(GMM,Gaussian Mixture Model)的LDPC-BICM接收方案。考虑纠错编码方案的因素,本文提出基于原型图的外附信息转移(PEXIT,Protograph-based Extrinsic Information Transfer)分析的最优脉冲门限方法,并分析编码调制方案配置参数对最优脉冲门限的影响。已知脉冲消隐操作导致软解调过程的信道条件概率不再满足高斯分布,该方案在脉冲门限优化的基础上采用期望最大化算法实现基于GMM模型的信道条件概率建模。根据GMM模型建模,本文提出基于GMM模型的MAP解调器达到提升软信息精度的作用。仿真表明,PEXIT分析工具准确计算最优脉冲门限的同时,该方案凭借GMM模型辅助MAP解调器显著提升软解调性能。
2)针对非线性效应下的宽带可见光多载波通信系统,论文提出基于深度前馈网络的LDPC-BICM接收方案NN-BICM。面对发光二极管器件的双边削波导致MAP解调器的信道条件概率难以给出数学解析式的挑战,该方案采用模型驱动策略巧妙结合深度前馈网络的感知能力和LDPC译码器的推断能力,辅助MAP解调器校正失配的LLR信息。为获得迭代增益,本文在NN-BICM方案的基础上提出两种迭代解调译码方案,即译码器反馈到MAP解调器的单涡轮迭代结构和译码器同时反馈到深度前馈网络和MAP解调器的双涡轮迭代结构。实际可见光通信场景中,本文提出适用于NN-BICM方案的功率分配和比特加载策略。仿真表明,NN-BICM和迭代解调译码方案均能够校正失配的LLR信息,并有效突破非线性效应的译码性能瓶颈和显著提升可达速率。
3)针对同频干扰场景中的正交频分复用(OFDM,Orthogonal Frequency Division Multiplexing)系统,论文提出基于深度序列模型的LDPC-BICM接收方案。考虑到MAP 解调器无法准确描述同频干扰影响的信道条件概率,该方案采取模型驱动策略联合深度序列模型和LDPC译码器。单天线场景中,论文分别提出单子载波网络结构和多子载波网络结构两种方案,辅助MAP解调器提升软解调性能。其中,单子载波网络结构利用深度前馈网络表征单子载波的信道条件概率,多子载波网络结构利用深度序列模型表征子载波间相关性影响的信道条件概率。多天线场景中,该方案利用深度序列模型表征空域维度相关性影响的信道条件概率,辅助MAP解调器增强LLR信息的可靠性。此外,论文提出固定训练模式和随机训练模式的差异化训练策略,并分析同频干扰强度、信道状态信息和高斯噪声三方面的鲁棒性影响。仿真表明,深度序列模型能够充分利用频域和空域相关性,进一步提升信道条件概率的表征能力,增强对抗同频干扰的鲁棒性。
为应对多元化业务场景和差异化性能需求的挑战,LDPC-BICM系统兼顾传输有效性和系统可靠性的同时,迫切需要借助人工智能领域的深度学习手段赋予接收方案感知能力和决策能力,最终达到增强典型应用场景中解调译码性能的目标。围绕深度学习辅助的LDPC-BICM接收方案,论文的核心内容和研究成果主要包括:
1)针对异构干扰场景中的民用航空移动宽带通信系统,论文提出基于高斯混合模型(GMM,Gaussian Mixture Model)的LDPC-BICM接收方案。考虑纠错编码方案的因素,本文提出基于原型图的外附信息转移(PEXIT,Protograph-based Extrinsic Information Transfer)分析的最优脉冲门限方法,并分析编码调制方案配置参数对最优脉冲门限的影响。已知脉冲消隐操作导致软解调过程的信道条件概率不再满足高斯分布,该方案在脉冲门限优化的基础上采用期望最大化算法实现基于GMM模型的信道条件概率建模。根据GMM模型建模,本文提出基于GMM模型的MAP解调器达到提升软信息精度的作用。仿真表明,PEXIT分析工具准确计算最优脉冲门限的同时,该方案凭借GMM模型辅助MAP解调器显著提升软解调性能。
2)针对非线性效应下的宽带可见光多载波通信系统,论文提出基于深度前馈网络的LDPC-BICM接收方案NN-BICM。面对发光二极管器件的双边削波导致MAP解调器的信道条件概率难以给出数学解析式的挑战,该方案采用模型驱动策略巧妙结合深度前馈网络的感知能力和LDPC译码器的推断能力,辅助MAP解调器校正失配的LLR信息。为获得迭代增益,本文在NN-BICM方案的基础上提出两种迭代解调译码方案,即译码器反馈到MAP解调器的单涡轮迭代结构和译码器同时反馈到深度前馈网络和MAP解调器的双涡轮迭代结构。实际可见光通信场景中,本文提出适用于NN-BICM方案的功率分配和比特加载策略。仿真表明,NN-BICM和迭代解调译码方案均能够校正失配的LLR信息,并有效突破非线性效应的译码性能瓶颈和显著提升可达速率。
3)针对同频干扰场景中的正交频分复用(OFDM,Orthogonal Frequency Division Multiplexing)系统,论文提出基于深度序列模型的LDPC-BICM接收方案。考虑到MAP 解调器无法准确描述同频干扰影响的信道条件概率,该方案采取模型驱动策略联合深度序列模型和LDPC译码器。单天线场景中,论文分别提出单子载波网络结构和多子载波网络结构两种方案,辅助MAP解调器提升软解调性能。其中,单子载波网络结构利用深度前馈网络表征单子载波的信道条件概率,多子载波网络结构利用深度序列模型表征子载波间相关性影响的信道条件概率。多天线场景中,该方案利用深度序列模型表征空域维度相关性影响的信道条件概率,辅助MAP解调器增强LLR信息的可靠性。此外,论文提出固定训练模式和随机训练模式的差异化训练策略,并分析同频干扰强度、信道状态信息和高斯噪声三方面的鲁棒性影响。仿真表明,深度序列模型能够充分利用频域和空域相关性,进一步提升信道条件概率的表征能力,增强对抗同频干扰的鲁棒性。