【摘 要】
:
轴承是旋转机械的重要零件,对于轴的旋转有着支撑的作用,广泛运用于齿轮箱和发电机等机械中。在旋转机械工作时,轴承的振动会影响整个机械的振动、噪声、精度和寿命等,甚至还会引起机械零件损坏引起重大安全事故。轴承作为重要的支承部件,其工作的动态特性影响整个机械的工作情况,因此对轴承的动力学研究十分重要。双列圆柱滚子轴承含有内外圈、保持架和滚子等部件,在运动过程中,除了滚子和内外圈之间的相对滑动,还有保持架
【基金项目】
:
国家自然科学基金面上项目“高速柔性转子制造误差的动态行为演变机理与动力学建模方法研究”(项目编号:51975068); 面上项目“行星滚针轴承保持架冲击碰撞力演变机理与动力学建模方法研究”(项目编号:52175120);
论文部分内容阅读
轴承是旋转机械的重要零件,对于轴的旋转有着支撑的作用,广泛运用于齿轮箱和发电机等机械中。在旋转机械工作时,轴承的振动会影响整个机械的振动、噪声、精度和寿命等,甚至还会引起机械零件损坏引起重大安全事故。轴承作为重要的支承部件,其工作的动态特性影响整个机械的工作情况,因此对轴承的动力学研究十分重要。双列圆柱滚子轴承含有内外圈、保持架和滚子等部件,在运动过程中,除了滚子和内外圈之间的相对滑动,还有保持架与滚子之间的碰撞力和摩擦力,各部件之间的油膜拖动力等力,因此亟待开展考虑双列圆柱滚子轴承各部件之间相互作用力的全部件轴承动力学建模的研究,提出考虑双列圆柱滚子轴承各部件之间相互作用力的全部件轴承动力学建模方法;提出双列圆柱滚子轴承-转子系统耦合动力学模型,分析刚性转子系统和柔性转子系统之间动态特性的差异;在轴承故障的影响下,轴承振动会发生很大的变化,因此亟待开展对实际形状的轴承故障的动力学研究,为轴承故障预测和检测提供参考;此外,轴承的振动噪声也可以为轴承故障检测提供参考,因此需要为双列圆柱滚子轴承声振耦合模型开展研究;最后,随着高速列车的普及,越来越多的高速列车使用双列轴承,因此将建立高速列车双列圆柱滚子轴承耦合模型是必要的,可以为以后的研究提供基础模型。论文的主要研究内容:(1)针对双列圆柱滚子轴承内部相互作用不清等问题,提出考虑双列圆柱滚子轴承各部件之间相互作用力的全部件轴承动力学模型,研究转速和载荷对双列圆柱滚子轴承各个部件的动态特性的影响规律,为双列圆柱滚子轴承的动态特性的研究提供理论支撑。(2)针对刚性转子系统动态特性描述不全的问题,提出考虑自身刚度和轴承的柔性转子系统动力学模型,研究刚性转子和柔性转子不同部位的不同动态特性响应,分析刚性转子和柔性转子动力学模型之间的动态特性差异。(3)针对轴承故障计算模型对轴承故障形状的近似计算方法的局限性,提出不规则轴承故障形状的双列圆柱滚子轴承故障动力学模型,对比近似计算方法和不规则轴承故障形状的差异,分析含有不同尺寸的不规则故障的双列圆柱滚子轴承的振动特性。(4)针对双列圆柱滚子轴承振动与噪声耦合问题,提出双列圆柱滚子轴承声振耦合模型,研究载荷和转速对轴承噪声的影响规律,为故障检测提供一定的参考依据。(5)针对组合误差对高速列车动态特性的影响问题,提出双列圆柱滚子轴承高速列车动力模型和组合误差模型,研究单一误差和组合误差对高速列车系统振动特性的影响规律。
其他文献
传动系统是直升机的重要组成部分。由于直升机传动系统的自身结构及动力输出特性,在各类直升机上大多采用了细长轴部件进行传动,其主要由薄壁细长轴、膜片联轴器、花键及其上的轴承组成。由于直升机上的传动轴一般采用薄壁圆筒形式,且采用了膜片联轴器这样柔性传动部件,系统的临界转速一般较低。当传动轴的工作转速接近其振动的固有频率时,传动轴上的不平衡量会使传动轴出现强烈的振动。因此在设计时,需要深入研究细长传动轴的
以人体关节为代表的机械关节具有典型的负载运动特性,运转过程中的峰值功率远超平均值,会大大加重对驱动器的工作负担和功率需求。弹性驱动器可以通过在关节处增加弹性元件实现对能量的积蓄和释放,从而降低峰值功率,现有弹性驱动器无法实现对蓄能和放能的精准控制,因此增益效果差强人意。针对当前弹性驱动器能量利用率低、控制精度差、无法灵活控制能量流动等不足,基于回转体弹性元件的特性,设计了一种可以实现灵活控制能量流
工业计算机断层成像(Computed Tomography,CT)技术被广泛地应用于汽车、航空、国防等领域的机械产品质量判定。CT图像质量的好坏直接影响机械产品质量的判定。受装配和定位精度等限制,工业CT系统实际的几何位置与理想位置会存在偏差。利用存在偏差的几何参数进行图像重建,会导致重建图像中出现几何伪影,降低图像质量。因此,成像之前需要对CT系统进行几何参数标定。针对目前工业CT系统几何参数标
软体机器人以非凡的环境适应性和兼容性成为机器人研究的热点,其可应用于刚性机器人无法进入的狭窄非结构环境,但传统的软体移动机器人运行效率较低且难以克服复杂地形。多向跳跃能力作为一种扩宽活动范围、克服障碍的有效手段被自然生物广泛使用,可将其集成到软体机器人上以增强灵活性。然而,现有的软体机器人大多采用复杂笨重的结构或多单元模块设计以实现多向跳跃,限制了其在狭窄环境中的灵活移动。针对目前可转向/多向跳跃
伞降回收是中小型无人机应用较多的一种回收方式,具有场地适应性好,简单安全等优势。滑橇式起落架是无人机伞降常用的一种减震器,其缓冲性能决定着无人机能否安全起降。本文以伞降滑橇式起落架为研究对象,建立了滑橇式起落架刚柔耦合动力学模型,对其缓冲性能进行了优化设计与研究。首先,针对某固定翼无人机伞降着陆缓冲装置的设计要求,提出了在滑橇基础上附加油气缓冲器的设计方案并对其进行了运动学分析。通过理论计算与参照
高精度谐波减速器广泛应用于航空航天、医疗器械、工业机器人等领域。目前谐波减速器的设计寿命普遍要求大于8000h,当生产厂家在评估或预测产品正常使用寿命指标时,若通过全寿命试验,试验周期长、费用代价高,难以满足生产厂家低成本开发谐波减速器的需求,因此工程中亟需进行谐波减速器加速寿命试验方法研究,为谐波减速器疲劳性能分析与寿命预测提供基础。针对以上问题,本文以双圆弧谐波减速器为研究对象,基于加速寿命试
随着多旋翼无人机相关技术的迅速发展,其已经广泛应用于生活的方方面面,带来了巨大的经济与社会效益。然而,多旋翼无人机普遍存在着飞行作业时间短、作业噪声大等问题。为解决这些问题,本文提出了一款仿蝙蝠式的可栖附式飞行机器人。同时为解决现有飞行栖附机器人环境感知能力弱、抗干扰性差、缺乏自主性等问题,本文还设计了该机器人的环境感知系统、伺服控制系统以及上层规划系统。具体而言,本文主要开展了如下研究:(1)仿
钛合金航空紧固件螺纹常采用冷滚压技术进行加工,但钛合金属于典型的难加工材料,坯料的热处理工艺参数及滚压工艺参数选择不当,在螺纹冷滚压成形过程中极易发生破裂损伤,这会对航空器造成重大的安全隐患。本论文以实际工程项目为依托,通过材料实验、理论分析、有限元模拟和滚压实验相结合的方法,针对TC4钛合金螺纹冷滚压成形过程中的损伤机制,开展了系统性研究,主要研究内容如下:(1)开展了不同热处理工艺下TC4钛合
柔性电子转移打印技术快速发展,这种技术能够使微型电子元器件能够在耐高温耐腐蚀的施主基座上制造完成后,将其通过转移打印的方式运输到无法承受直接加工的应用柔性电子电路中,例如曲线电子,生物集成电路及可变形电路等。现阶段转移打印技术存在以下缺点:损伤印章(转移运输装置),印章制造成本高,捕获力有限,无法大规模转移,无法对三维构型微粒转移打印。超声波悬浮技术对微粒定位精确,抗干扰性好,能捕获三维空间微粒。
在机械振动状态监测领域,无线传感器网络(wireless sensor networks,WSNs)相较于传统的有线数据收集方式具有部署方便、机动灵活、可维护性好等特点,已经作为常见振动数据的获取手段。然而高频、高精度的振动信号收集在单位时间内会产生大量数据,随着装备和数据的爆发式增长,目前机械振动WSNs集中式数据存储和处理的模式逐渐暴露出通信能耗开销大、时延长、带宽需求高、数据中心计算与存储压