基于核酸的新型多功能纳米载体的构建和应用研究

来源 :湖南大学 | 被引量 : 0次 | 上传用户:binghuapeng
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着纳米技术和生命科学的发展,纳米材料在生物医学研究中发挥着越来越重要的作用,而纳米材料的生物安全性问题也越来越受到人们的关注。核酸分子,作为生命体最基本的物质之一,具有良好的生物相容性、高度可编程性以及强大的自组装能力。因此,核酸被广泛地用于各种纳米结构的设计和合成,并应用于化学、生物、医学等各个研究领域。核酸纳米结构,作为一种天然成分的纳米材料,具有明显优于其他纳米载体和治疗方式的优势,在纳米医学、生物传感等领域得到了广泛的认可,并迅速发展成核酸纳米技术。在核酸纳米技术中,天然核酸因是遗传信息的
其他文献
蛋白质是生物体的重要组成成分,也是细胞生理活动、分子进化以及疾病致病机制的关键元件。荧光蛋白可以自主发出荧光,具有基因编码性等特点,在生物示踪、传感和生物材料等生命科学领域中发挥着重要的作用。依托基因工程、蛋白质工程技术的迅速发展,对荧光蛋白的结构进行合理的设计和改造,能够赋予其新的信号开关性质和功能,拓宽其在生物传感和蛋白组装等方面的应用范围。表面重构是一项重要的蛋白质工程技术,利用此技术可以获
学位
中医药作为中华民族的传统医学,为各民族的繁衍与健康贡献了自己独有的疗效,为阿尔茨海默病的防治提供了希望。阿尔茨海默病(Azlheimer’s diesas,AD)的典型特征性神经病理改变是脑组织细胞外神经炎性斑块(Senileplaque,SP)和细胞内神经原纤维缠结(neurofibrillary tangle,NFT)。淀粉样蛋白(β-Amyloid,Aβ)是SP的主要成份,由淀粉样肽前体蛋白
学位
红树林生态系统为人类提供了大量的生态、经济和社会效益。在福建省九龙江河口,由于人为活动等原因,大量红树林已遭受破坏,同时为恢复和重建红树林的生态功能,红树林造林计划也已展开。然而,该区域红树林的总体状况仍有待进一步了解。实地调查红树林的状态需要花费大量人力物力;遥感技术则提供了一个有效的手段来准确评估红树林的分布、地上生物量和生态系服务价值等。利用遥感技术的红树林研究在该地区鲜有报道。本研究基于遥
学位
随着近十年汽车工业的迅速发展以及人们对更便捷、安全和环保生活的追求,目前燃油汽车市场已逐步转向混合动力汽车和纯电动汽车。相应地对动力电池能量密度、功率密度和安全性提出越来越高的要求,传统的铅酸电池、锂离子电池等已无法满足这一日益增长的要求。锂硫(Li-S)电池作为一种能量密度高、成本低、环境友好且能量转化效率高的电能存储装置,被认为是极具潜力的下一代电池系统。然而,目前广泛应用于Li-S电池正极中
学位
为了满足新能源汽车和大规模储能等对碱金属(锂,钠,钾)离子电池的需求,发展具有高能量密度、快速充放电能力以及长循环稳定性的电极材料成为其中的重中之重。通常情况下,界面状态极大程度上影响电化学性能的高低,尤其是电解液/电极材料的固液界面和电极材料内部的相界面。根据活性物质的物理化学性质定向设计合理的界面特性以提高碱金属离子电池的电化学性能是一个具有挑战性的研究课题。鉴于转换型负极材料(如:硫化物和氯
学位
铜锌锡硫硒(Cu_2ZnSn(S,Se)_4,CZTSSe)半导体具有组成元素丰富且无毒,光学带隙连续可调,光吸收系数高等优点,被认为是新一代无机化合物薄膜太阳能电池的理想材料。不良背接触界面和开路电压损失大是限制CZTSSe薄膜电池效率提升的两个关键因素。本论文采用安全、环保的二甲基亚砜(DMSO)溶液法制备CZTSSe太阳能电池,针对CZTSSe电池的不良背接触界面和开路电压损失大的问题,通过
学位
红树林生长在热带和亚热带的海岸线或河口潮间区域,是陆地向海洋过渡的特殊生态系统,拥有巨大的生物量,是河口区域重要的初级生产力。红树林不仅可以抵御潮汐风暴、防堤护岸,还可以吸纳、截留、去除水体中的营养盐及重金属。随着全球气候变化,人类越来越关心环境问题,过去数十年,特别是工业氮肥的使用,使水体富营养化在全球范围内爆发,氮的迁移转化成为研究热点。作为陆源物质入海的过渡带,红树林对缓解氮污染扮演着重要角
学位
苯并[a]芘(BaP)是一种在海洋环境中广泛存在、具有免疫毒性和致癌性的多环芳烃代表性污染物。实验室前期研究发现,BaP暴露与免疫因子LPS刺激同样会引起真鲷和黑鲷抗菌肽hepcidin的表达,已知LPS通过免疫信号通路诱导的hepcidin表达与免疫应答相关,而BaP暴露引起的hepcidin表达是否也是通过相似的免疫信号通路及具有相似的免疫作用,鲜有报道。本研究选用海洋模式生物——海水青鳉为研
学位
随着中国工业的快速发展,工业污水中难降解有机污染物的含量逐渐增加,为我国水环境的治理带来了极大的挑战。Fenton水处理技术,尤其是非均相Fenton催化体系,对该类污染物具有优越的降解性能,对国家人民健康、环境生态保护、以及社会经济的发展都具有重要的意义。因此,开发高性能非均相Fenton催化剂已成为Fenton水处理技术的研究核心,而较低的有机物降解效率和H2O2利用率一直是阻碍其工业实际应用
学位
金属有机骨架(metal-organic frameworks,MOFs)材料是具有周期性网络结构的纳米材料,因其比表面积大、结构多样、性质独特,是目前新型功能材料研究领域的一个热点,已被广泛用于有机小分子的吸附与分离、传感、催化反应等领域。鉴于MOFs材料特有的结构和性能,将其用作化学发光反应催化剂是一个重要的研究方向。流动注射-化学发光法由于具有设备简单、灵敏度高、试剂和样品消耗少、分析速度快
学位